FROM: M att M urawski, PE
TO: Brett Grabowski
DATE: July 20,2022

SUBJECT: Hydraulic Evaluation Summary Proposed Patrick Brook Culvert

SUMMARY

Ripple evaluated the performance of a proposed culvert that would convey Patrick Brook under a new town road paralle to Rte 116, connecting the Hinesburg Center II (HCII) development with Haystack development on the other side.

The proposed culvert is a 20^{\prime}-wide $\times 6^{\prime}$-high concrete box culvert with upstream and downstream headwalls and wingwalls. It would fully spans the 16 '-wide natural bankfull channel width. It would be recessed into the channel to provide a natural bottom. As analyzed, the culvert is 59^{\prime} long, which is sufficiently long to provide two vehicle lanes, generous shoulders for bicycle lanes, curbs, and at least one sidewalk.

The analysis shows that the proposed culvert (and associated roadway fill for the approaches on either side) does not raise the water surface elevation of Patrick Brook during the 100-year baseflood, and therefore complies with the hydraulic requirements of the National Flood Insurance Program (NFIP) and associated Town of Hinesburg regulations.

MODELNG APPROACH

Overview. Hydraulic analysis was performed using the HEC-RAS version 5.0.70 computer program, developed by the US Army Corps of Engineers. The program computes a wide range of hydraulic variables for each peak discharge simulated including water surface elevation, velocity, and shear stress. We modeled the site in one dimensions (1D) to be consistent with most previous studies of Patrick Brook. The analysis extends from the LaPlatte River at the downstream end to Rte 116 at the upstream end.

Cross Sections. The cross sectional geometry of the channel and surrounding floodplain of the study area was based on LiDAR topography acquired 10/31/2014. This data was used to represent existing conditions. The data provide elevation values on a 0.7 m grid. The geometry includes the HCl development and the Town water/sewer lines that are located downstream. Portions of selected cross sections in the model were blocked to represent future fill due to the proposed HClI development.

Roughness. M anning's n-values were assigned based on inspection of the channel and floodplain and standard reference values. The channel was assigned an n-value of 0.045 and the floodplain 0.06 .

Hydraulic Structures. Under starting conditions, no structures are present in the study area (Rte 116 is just upstream).

Boundary Conditions. External boundary conditions were established at the downstream and upstream model limits. At the downstream limit, starting water surface elevations were based on the FEM A Flood Insurance Study of the brook. At the upstream limit, starting elevation was set to critical depth.

Flow. Flows for the 100-yr, 50-yr, and 10-yr events were taken from the FEM A FIS. Flow for the 2-year event was taken from USGS Streamstats (adjusted to reflect upstream diversions). The flows are as follows:

Event Flow (cfs)
100-yr 271 cfs
50-yr 243
10-yr 178
2-yr 74
Computational Methods. The model was run in "M ixed" flow regime to allow calculation of both sub and supercritical flows.

RESULTS

The addition of the culvert and the roadway approaches on either side do not raise the water surface elevation of Patrick Brook during the 100-year baseflood event (or any of the other flows analyzed). Due to an increase in velocity near the culvert entrance, there is in fact a minor reduction in flood elevation immediately upstream, and then no change further on. The water surface elevation upstream of the inlet is approximately 4.0 feet above the inlet.

DESIGN RECOMM ENDATIONS

1. Culvert width should be 20^{\prime} (as modeled), or greater
2. Culvert height should be 6^{\prime} or greater.
3. The culvert should be recessed to provide a natural bottom consistent with Vermont Agency of Natural Resources permit requirements. It was recessed 1.5' in the model, leaving 4.5' clear.
4. Headwalls and wingwalls should be included upstream and down to provide the modeled hydraulic conditions.
5. Culvert slope should approximate natural channel ($0.008 \mathrm{ft} / \mathrm{ft}$, as modeled)
6. If the road over the culvert is to include a sag, it should be located to the side of the culvert so that overflow in the event of an extreme flood event is not concentrated on the structure.

ATTACHM ENTS

HEC-RAS model output (profile, cross sections, and summary table) are attached.

Reach	River Sta	Profile	Plan	Q Total	Min ChEl	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude \# Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ftit)	(ft/s)	(sq ft)	(ft)	
Reach 1	2657	100 yr	PropPlusCulv	271.0	328.1	331.62	330.1	331.7	0.001691	2.5	163.4	201.8	0.3
Reach 1	2657	100 yr	Proposed	271.0	328.1	331.62	330.1	331.7	0.001691	2.5	163.4	201.8	0.3
Reach 1	2635	100 yr	PropPlusCulv	271.0	328.8	331.28	331.3	331.6	0.011210	5.4	89.2	150.9	0.7
Reach 1	2635	100 yr	Proposed	271.0	328.8	331.28	331.3	331.6	0.011210	5.4	89.2	150.9	0.7
Reach 1	2563	100yr	PropPlusCulv	271.0	327.3	330.77	329.4	330.9	0.002728	3.4	96.4	143.1	0.4
Reach 1	2563	100 yr	Proposed	271.0	327.3	330.77	329.4	330.9	0.002720	3.4	96.5	143.4	0.4
Reach 1	2502	100 yr	PropPlusCulv	271.0	327.2	330.78	328.6	330.8	0.000625	1.7	167.8	187.5	0.2
Reach 1	2502	100yr	Proposed	271.0	327.2	330.78	328.6	330.8	0.000624	1.7	167.9	188.1	0.2
Reach 1	2392	100yr	PropPlusCulv	271.0	326.7	330.60	329.3	330.7	0.002139	2.9	124.0	195.1	0.3
Reach 1	2392	100 yr	Proposed	271.0	326.7	330.60	329.3	330.7	0.002133	2.9	124.2	195.3	0.3
Reach 1	2328	100 yr	PropPlusCulv	271.0	326.8	330.40	329.4	330.5	0.003116	3.3	113.4	276.3	0.4
Reach 1	2328	100 yr	Proposed	271.0	326.8	330.40	329.4	330.5	0.003095	3.3	113.7	276.6	0.4
Reach 1	2286	100 yr	PropPlusCulv	271.0	326.9	330.45	328.6	330.5	0.000466	1.4	268.3	329.4	0.1
Reach 1	2286	100 yr	Proposed	271.0	326.9	330.45	328.6	330.5	0.000464	1.4	268.6	329.6	0.1
Reach 1	2237	100yr	PropPlusCulv	271.0	326.8	330.12	329.3	330.4	0.005249	4.3	78.4	206.8	0.5
Reach 1	2237	100 yr	Proposed	271.0	326.8	330.12	329.3	330.4	0.005200	4.3	78.8	208.0	0.5
Reach 1	2197	100yr	PropPlusCulv	271.0	326.5	329.89	329.5	330.2	0.006183	4.7	88.5	326.1	0.5
Reach 1	2197	100 yr	Proposed	271.0	326.5	329.90	329.5	330.2	0.006033	4.7	89.6	328.0	0.5
Reach 1	2156 Br US	100 yr	PropPlusCulv	271.0	326.1	329.15	328.8	329.8	0.013804	6.3	45.0	74.6	0.8
Reach 1	2156 BrUS	100 yr	Proposed	271.0	326.1	329.79	328.9	330.0	0.003451	3.8	113.7	107.1	0.4
Reach 1	2111			Culvert									
Reach 1	2065 Br DS	100yr	PropPlusCulv	271.0	325.4	329.26	328.1	329.6	0.004712	4.6	68.9	76.7	0.5
Reach 1	2065 Br DS	100 yr	Proposed	271.0	325.4	329.26	328.1	329.6	0.004712	4.6	68.9	76.7	0.5
Reach 1	1927	100yr	PropPlusCulv	271.0	324.9	328.87		329.0	0.002849	3.5	114.5	137.7	0.4
Reach 1	1927	100 yr	Proposed	271.0	324.9	328.87		329.0	0.002849	3.5	114.5	137.7	0.4
Reach 1	1875	100 yr	PropPlusCulv	271.0	325.1	328.02	327.7	328.7	0.015323	6.7	43.9	61.1	0.8
Reach 1	1875	100 yr	Proposed	271.0	325.1	328.02	327.7	328.7	0.015323	6.7	43.9	61.1	0.8
Reach 1	1842	100yr	PropPlusCulv	271.0	324.0	328.26	326.8	328.4	0.002252	3.0	124.3	121.8	0.3
Reach 1	1842	100 yr	Proposed	271.0	324.0	328.26	326.8	328.4	0.002252	3.0	124.3	121.8	0.3
Reach 1	1708	100yr	PropPlusCulv	271.0	324.0	327.63	327.4	327.9	0.007095	4.8	90.6	98.1	0.5
Reach 1	1708	100 yr	Proposed	271.0	324.0	327.63	327.4	327.9	0.007095	4.8	90.6	98.1	0.5
Reach 1	1640	100yr	PropPlusCulv	271.0	323.6	327.43	326.8	327.5	0.003135	3.1	126.1	106.7	0.4
Reach 1	1640	100 yr	Proposed	271.0	323.6	327.43	326.8	327.5	0.003135	3.1	126.1	106.7	0.4
Reach 1	1516	100yr	PropPlusCulv	271.0	324.7	327.06	326.8	327.1	0.003908	3.1	184.6	754.8	0.4
Reach 1	1516	100 yr	Proposed	271.0	324.7	327.06	326.8	327.1	0.003908	3.1	184.6	754.8	0.4
Reach 1	1377	100 yr	PropPlusCulv	271.0	322.7	326.55	326.3	326.6	0.003268	3.2	188.7	759.2	0.4
Reach 1	1377	100 yr	Proposed	271.0	322.7	326.55	326.3	326.6	0.003268	3.2	188.7	759.2	0.4
Reach 1	1209	100yr	PropPlusCulv	271.0	322.4	326.10	325.8	326.2	0.002485	2.8	215.6	893.7	0.3
Reach 1	1209	100 yr	Proposed	271.0	322.4	326.10	325.8	326.2	0.002485	2.8	215.6	893.7	0.3
Reach 1	1020	100yr	PropPlusCulv	271.0	321.8	325.76	324.6	325.8	0.001517	2.4	233.5	527.4	0.3
Reach 1	1020	100 yr	Proposed	271.0	321.8	325.76	324.6	325.8	0.001517	2.4	233.5	527.4	0.3
Reach 1	804	100yr	PropPlusCulv	271.0	321.9	325.37	324.3	325.5	0.002285	2.8	188.3	583.0	0.3
Reach 1	804	100 yr	Proposed	271.0	321.9	325.37	324.3	325.5	0.002285	2.8	188.3	583.0	0.3
Reach 1	693	100 yr	PropPlusCulv	271.0	321.8	325.17	324.6	325.2	0.001993	2.2	220.4	636.8	0.3
Reach 1	693	100 yr	Proposed	271.0	321.8	325.17	324.6	325.2	0.001993	2.2	220.4	636.8	0.3
Reach 1	526	100yr	PropPlusCulv	271.0	322.6	324.81	324.5	324.9	0.003964	2.6	221.2	746.8	0.4
Reach 1	526	100 yr	Proposed	271.0	322.6	324.81	324.5	324.9	0.003964	2.6	221.2	746.8	0.4
Reach 1	344	100yr	PropPlusCulv	271.0	321.0	324.62	323.4	324.6	0.000606	1.4	419.7	1103.9	0.2
Reach 1	344	100 yr	Proposed	271.0	321.0	324.62	323.4	324.6	0.000606	1.4	419.7	1103.9	0.2
Reach 1	206	100yr	PropPlusCulv	271.0	320.4	324.60	323.3	324.6	0.000112	0.6	935.0	995.6	0.1
Reach 1	206	100 yr	Proposed	271.0	320.4	324.60	323.3	324.6	0.000112	0.6	935.0	995.6	0.1

