Stormwater Narrative Hinesburg Center – Phase II

Revised May 2022

1. Project Description

The project parcel is located to the west of VT Route 116 and just south of Patrick Brook in the Town of Hinesburg. The parcel is accessible via Farmall Drive along both the east and south property lines. To the east of the parcel is Phase I of Hinesburg Center, which is a mixed-use development. The Creekside development is located to the south of the project parcel and consists of 28 single-family lots and 4 multi-family units. Patrick Brook is located along the northerly project boundary and LaPlatte River is located along the westerly and southwesterly boundary.

This project proposes the construction of 15 new single-family lots, three multi-family units, a 34unit mixed-use building and three other lots commercial in nature. In addition, four (4) new road segments are proposed along with pedestrian friendly streetscapes and associated utility infrastructure. Stormwater runoff associated with the new impervious surfaces will be conveyed via storm system and treated via a series of varying practices that meet the 2017 Vermont Stormwater Management Manual (VSMM), including a gravel wetland, bioretention basin, proprietary filter treatment device, and disconnection. Due to site topography and the linking of this project to multiple existing roads, some of the new impervious will be treated, detained, and then discharged to existing stormwater systems. We are proposing alterations to the drainage patterns and treatment of impervious associated with the existing Hinesburg Center Phase I development) discharge permit 6506-9015). There are two treatment areas located within the project limits that will be eliminated, a Disconnection Area and a Grass Channel. The Disconnection Area will be directed to the Hinesburg Center Phase I Wet Pond and the Grass Channel will be directed to a new Filterra Bioretention Vault for treatment, then to an underground pipe storage system for detention, and controlled release to the Creekside storm system, making its way to the existing Dry Pond.

The project has been designed to meet Low Impact Development guidelines as required by the Town and to be permittable under a State Stormwater Discharge Permit, which will be required prior to construction.

2. Existing Condition

The Hinesburg Center Phase II project area is an existing agricultural field that has been hayed for decades. There are two existing raised walking trails on the site, one running parallel to Patrick Brook and the other running north-south near the center of the property, which connects Farmall Drive to the trail along Patrick Brook. Generally, the project site slopes to the west and south. The site is extremely flat with slopes between 0-2% with the exception of the raised access trail, areas adjacent to existing streets, and the Patrick Brook & LaPlatte River stream banks.

The majority of the site is comprised of Winooski very fine sandy loam (HSG C), with some areas along the eastern project bounds mapped as Limerick silt loam (HSG C). Lamoureux and Dickinson conducted a number of soil augers and infiltration tests across the site. The soil investigations within the field generally yielded very silty soils with mottling at depths of less than 12". In accordance with

NEH guidance, any soils with a water table within 24" of the surface should be classified as HSG D soils. Based on the above we have reclassified the soils within the field to be HSG D.

Soils adjacent to Patrick Brook were identified as fine sands with mottling at depths of approximately 24". Infiltration tests were conducted in a number of locations that yielded moderate infiltration rates ranging from 10-20 in/hr. Although these rates would allow for the construction of infiltration practices, their depth to SHGW and their proximity to the Brook limit their viability. Infiltration practices would generally need to be located within the River Corridor and the Town of Hinesburg 100' Stream Buffer/Setback from top of bank in order to make use of the infiltrative soils.

3. Existing Stormwater System:

The site currently has an existing grass channel that is providing water quality treatment for a portion of Farmall Drive, Kaileys Way, and the existing sidewalk on the east side of Kaileys Way. With the construction of Road A, the grass channel will be removed and this stormwater will be treated via a new alternatives treatment practice approved by the State and meeting the 2017 VSMM (see section on Proposed Stormwater System below for detailed information).

There is also an area adjacent to Kaileys Way that was designed to provide disconnection and treatment of runoff for a portion of Kaileys Way. The disconnect area will be eliminated with the construction of Building C and due to existing drainage patterns and upgrades to the existing HCl Wet Pond will be made to provide treatment.

4. Proposed Stormwater System:

Stormwater runoff will be treated via a new gravel wetland, a new bioretention basin, a new alternatives treatment practice (Filterra Bioretention System), and rooftop disconnection where feasible. Runoff from the majority of the site (6.85 acres) is managed within the gravel wetland, which provides a high level of both TSS removal (80-97%) and TP removal (60-80%). Runoff from a portion of onsite and offsite drainage area (0.46 acres) is managed within the two Filterra Bioretention Systems, which is manufactured to provide 86% TSS removal and 70% TP removal, in addition to multiple high levels of heavy metal and hydrocarbon removal. The disconnection area (which totals 0.22 acres of new impervious area) is a Tier 1 practices and generally achieve 98% TSS removal and 80% TP removal.

All impervious surface is treated and managed onsite. The Filterra units will provide WQ_v treatment onsite, however, this practice does not provide detention or controlled release, therefore we are using this in conjunction with an underground pipe storage system to satisfy requirements for the CP_v and Q_{P10} .

a) Description of Impervious Area:

- i) Existing impervious area = 0.00 acres
- ii) New impervious area treated onsite = 4.93 acres
 - (1) 4.50 acres treated in proposed gravel wetland
 - (2) 0.16 acres treated via Filterra Bioretention System and Underground Pipe Storage System
 - (3) 0.22 acres treated via simple disconnect
- iii) Existing impervious area (from offsite) treated onsite

- (1) 0.17 acres from HCl grass channel treated onsite via Filterra Bioretention System and Underground Pipe Storage System
- (2) 0.10 acres from HCI simple disconnection treated onsite via gravel wetland
- b) Receiving Body:
 - i) S/N002: LaPlatte River
 - ii) S/N003: Stormwater system to The Canal
 - iii) S/N004: Stormwater system to The Canal
- c) Fish Habitat Designation for Receiving Water:
 - i) S/N001: Cold water fishery
 - ii) S/N002: Cold water fishery
 - iii) S/N003: Cold water fishery
- d) Description of compliance with each of the treatment standards in the 2017 VSMM including the treatment practices or waivers used to meet each of the following standards:
 - i) Groundwater Recharge Standard:
 - (1) Sitewide: The Groundwater Recharge Standard required for this project is provided via simple disconnection. The new project area is not required to meet Groundwater Recharge Standard as the site has been assessed to be HSG D soils based on NEH guidance, however the drainage areas from Hinesburg Center Phase I were evaluated in previous application to be HSG B and C soils, therefore we are satisfying the Groundwater Recharge Standards for these locations.
 - ii) Water Quality Treatment Standard (WQ_V):
 - (1) S/N001: The Water Quality Treatment Standard is met by providing 50% volume within the gravel wetland stone permanent pool and its forebay, along with 24-hour extended detention. The Water Quality Treatment Standard is also met by providing simple disconnection of rooftops.
 - (2) S/N002: The Water Quality Treatment Standard is met via two Filterra Bioretention Systems, which is an approved alternatives treatment practice by the State of Vermont.
 - (3) S/N003: The Water Quality Treatment Standard is met via a bioretention basin (not designed to infiltrate) by filtering the entire WQ_v through the bioretention media.
 - iii) Channel Protection Standard (CP_V):
 - (1) S/N001: The Channel Protection Standard is waived as this site drains directly to the LaPlatte River, which is a water with a drainage area greater than 10 square miles, of which the site makes up less than 5% of the watersheds area.
 - (2) S/N002: The Channel Protection Standard is provided via an Underground Pipe Storage System utilizing a minimum orifice size of 1" to maximize extended detention.
 - (3) S/N003: The Channel Protection Standard is met via a bioretention basin (not designed to infiltrate) by filtering the entire CP_v through the bioretention media.

- iv) Overbank Flood Protection Standard (Q_{P10}):
 - (1) S/N001: The Overbank Flood Protection Standard is waived as this site drains directly to the LaPlatte River, which is a water with a drainage area greater than 10 square miles, of which the site makes up less than 5% of the watersheds area.
 - (2) S/N002: The Overbank Flood Protection Standard is provided via an Underground Pipe Storage System utilizing a minimum orifice size of 1" to maximize extended detention.
 - (3) S/N003: The Overbank Flood Protection Standard is provided via detention and controlled release of the 10-year storm event within the surface ponding of the bioretention basin.
- v) Extreme Flood Protection Standard (Q_{P100}):
 - (1) S/N001: The Extreme Flood Protection Standard is waived as there is less than 10-acres of total impervious surface associated with this site.
 - (2) S/N002: The Extreme Flood Protection Standard is waived as this site drains directly to the LaPlatte River, which is a water with a drainage area greater than 10 square miles, of which the site makes up less than 5% of the watersheds area. In addition, there is less than 10-acres of total impervious surface associated with this site.
 - (3) S/N003: The Extreme Flood Protection Standard is waived as there is less than 10-acres of total impervious surface associated with this site.
- e) Analysis of existing and proposed stormwater systems:
 - i) Hinesburg Center Phase II 100-year storm event
 - (1) The proposed Hinesburg Center Phase II stormwater system was subdivided and modelled at each catch basin to determine if the system could convey the 100-year storm event. The model is attached as an appendix to this Narrative. In sum, the system was sized to generally convey the 100-year storm event without ponding except for minor ponding at catch basin #3 located on Road D. The ponding level at this catch basin was found to be 3" above the grate, which is significantly below (1' or more) the likely first floor elevations of any single-family residence located along Road D.
 - ii) Creekside Development analysis at multiple storm events
 - (1) There are two points of analysis that introduce stormwater into the existing Creekside Development; discharge point S/N002 (Filterra/pipe storage outlet) and S/N003 (bioretention basin and Lot 30 drainage network outlet).
 - (a) S/N002 This discharge point was modelled to detain and provided controlled release for up to the 10-year storm event.
 - (i) During rain events up to the 10-year-storm event the discharge rate into the Creekside system is 0.05 cfs or less.
 - (ii) The underground pipe storage system also provides some detention for the 25-year storm event.
 - (iii) During the 100-year storm event the underground pipe storage system does not provide detention and controlled release, however, it is important to note that

under the 100-year storm event the existing Creekside storm system is fully inundated and the discharge from HCII does not create this condition.

- (b) S/N003 This discharge point was modeled to provide extended detention and controlled release up to the 10-year storm event for the bioretention basin which treats stormwater from the HCII project. In addition, to address concerns of Creekside residence, improvements to Lot 30 are proposed to balance the need to minimize standing water while also providing controlled release to stager the peak discharge into the existing Creekside stormwater system.
 - (i) During rain events up to the 1-year storm event the discharge rate into the Creekside system is under 0.01 cfs from the bioretention basin and 0.05 cfs from the Lot 30 drainage improvements due to the implementation of a new controlled release structure at the western end of Lot 30.
 - (ii) During the 10-year storm event the discharge rate into the Creekside system is 0.02 cfs from the bioretention basin and 1.61 cfs from the Lot 30 improvements. Ponding during the 10-year storm event reaches an elevation of 328.79' which does not encroach onto the existing Creekside lots. Ponding on Lot 30 subsides within 12 hours of the end of the 10-year storm event.
 - (iii) During the 100-year storm event the discharge rate into the Creekside system is 0.38 cfs from the bioretention basin and 6.22 cfs from the Lot 30 improvements. Ponding during the 100-year storm event reach an elevation of 329.17' which does encroach onto the existing Creekside lots but is still well below the first floor elevation of any of the Creekside homes.

5. Low Impact Development Criteria:

Hinesburg requires the use of Low Impact Development (LID) techniques where feasible based upon site characteristics. The following is a summary of the LID practices evaluated and justification for incorporation or exclusion:

a) Cluster Development:

The Planned Unit Development is a form a Cluster Development that incorporates reduction in lot sizes and setbacks in order to concentrate development in limited areas while preserving open space. This technique typically leads to a reduction in infrastructure and impervious surfaces. This development is requesting the reduction of lot depth from 100' to 95', reduction of lot widths from 60' to 47', reduction in lot area from 6,000 sf to 4,865 sf, and the reduction in distances of road centerlines from the required 200'. Each of these requested reductions in zoning regulations helps to promote the Cluster Development by increasing development density within focalized areas and dedicating open space for preservation.

b) Minimize Pavement Widths:

Reduction in pavement widths or the elimination of on-street parking can help to reduce new impervious surfaces and in turn reduce stormwater runoff. The Town of Hinesburg Road Policy Standards state that the traveled way width in the Village districts is 22', which equates to 11' travel lanes. Where parking is provided, on-street parking stalls are to be 8' in

width. On-street parking allows for the efficient use of land and reduction of impervious surface, compared to off-street parking lots. We are proposing the following lane widths and descriptions of on-street parking:

- Road A 11' wide travel lanes with 8' wide parking stalls on the north side of the street
- Road B 10' wide travel lanes with 8' wide parking stalls on the east side of the street for approximately 290' of road, the remainder has no on-street parking.
- Road C 11' wide travel lanes with 8' wide parking stalls on both the east and west side of the street.
- Road D private road with 9' wide travel lanes.

By reducing the lane widths of Road B from 11'to 10' we have eliminated $\pm 1,600$ square feet of impervious surface. By reducing the lane widths of private Road D from 11' to 9' we have eliminated $\pm 1,000$ square feet of impervious surface. Providing on-street parking on only one side of Road A eliminated over 2,300 square feet of impervious surface.

c) Minimize Setbacks & Frontages:

As discussed in the Cluster Development LID we have requested reduced frontage requirements from the zoning regulations in order to provide a more compact design. The decrease in frontage requirements (and depth requirements) for the interior single-family lots has increased the density from what would be 7.26 units per acre to 10.4 units per acre allowing for additional open space to be preserved without the loss in density.

d) Open Space Preservation:

The purpose of open space preservation is to conserve natural and critical environmental areas and maintain pre-development hydraulic characteristics. This project proposes numerous areas for community open space along with conservation areas which include riparian areas along Patrick Brook and LaPlatte River. While some of this community space is set aside to be used for pocket parks and may see improvements made to the existing conditions, other areas will be maintained in a manner similar to their current use.

e) Shared Driveway:

Shared driveways were not incorporated into the design of this project as the site layout does not generally lend itself to providing access to multiple residences in a way that would reduce overall impervious area. Due to the linear nature of the streets, and the intent to mimic portions of both the Creekside neighborhood and HCI, shared driveways were not appropriate for the residences. Shared parking infrastructure is proposed between Buildings A, B & C and between Building C & D in order to reduce impervious surfaces associated with separate parking lots. In addition, shared parking calculations have been provided to reduce the overall parking requirements and eliminate possible unused impervious surface.

f) Site Fingerprinting:

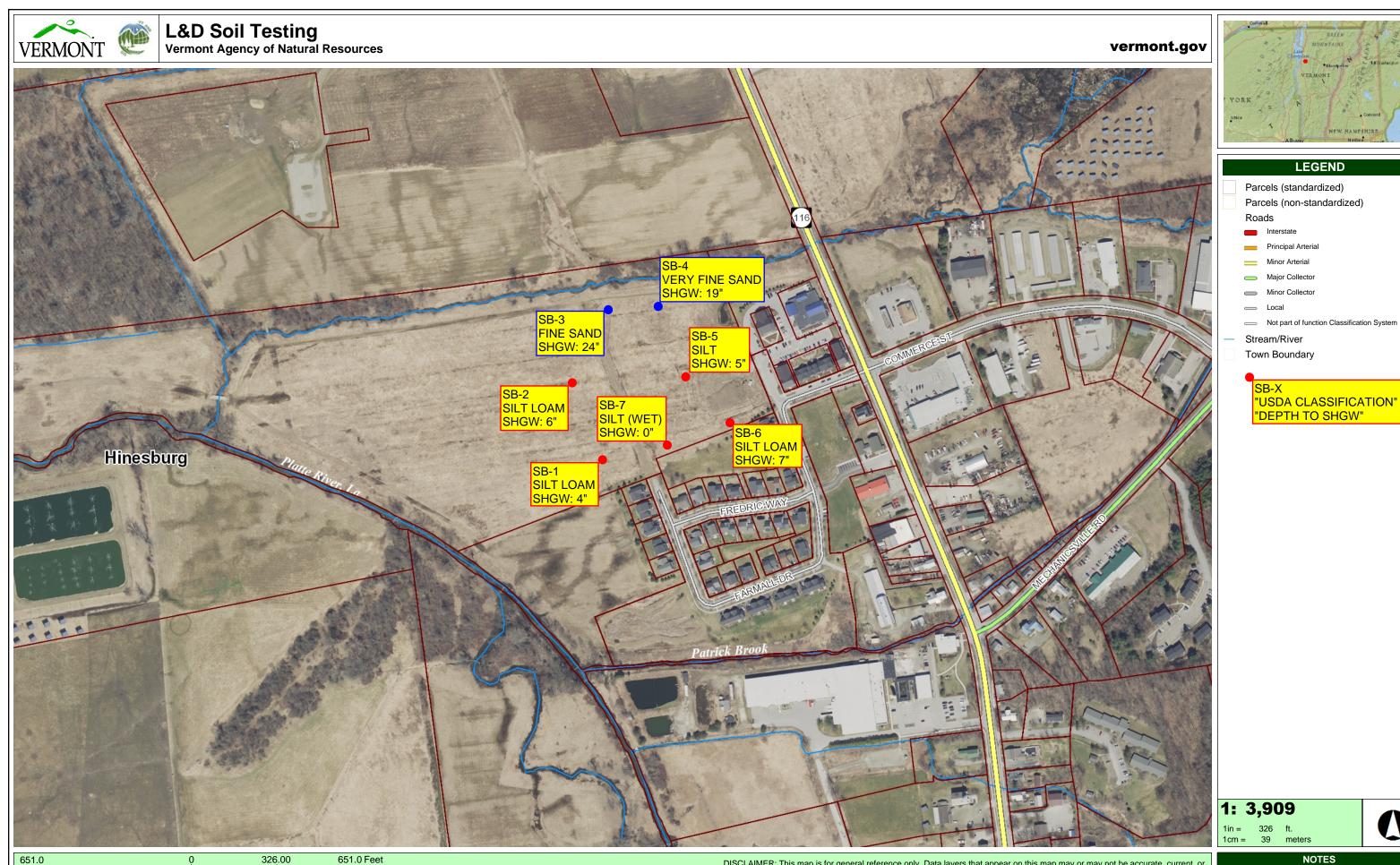
To the greatest extent feasible we have reduced the fingerprint of this development by identifying natural resources and limiting disturbance within these areas. Some of the

techniques used include the identification of existing vegetation to remain, the proposed grading of slopes 3H:1V or steeper to avoid areas of environmental significance, and the use of disconnection as treatment for runoff in limited available areas.

g) Filtration/Infiltration Practices:

Due to the nature of the soils on the site and the shallow depth to the seasonal high groundwater table, infiltration practices were excluded in the stormwater treatment design. The design instead incorporates a bioretention basin (designed to filter) and a gravel wetland which are both classified as Tier 2 STPs by the 2017 Vermont Stormwater Management Manual.

Areas that were identified to have soils conducive to infiltration practices were excluded from consideration due to their location with riparian buffers and the Town of Hinesburg Stream Buffer/Setback.

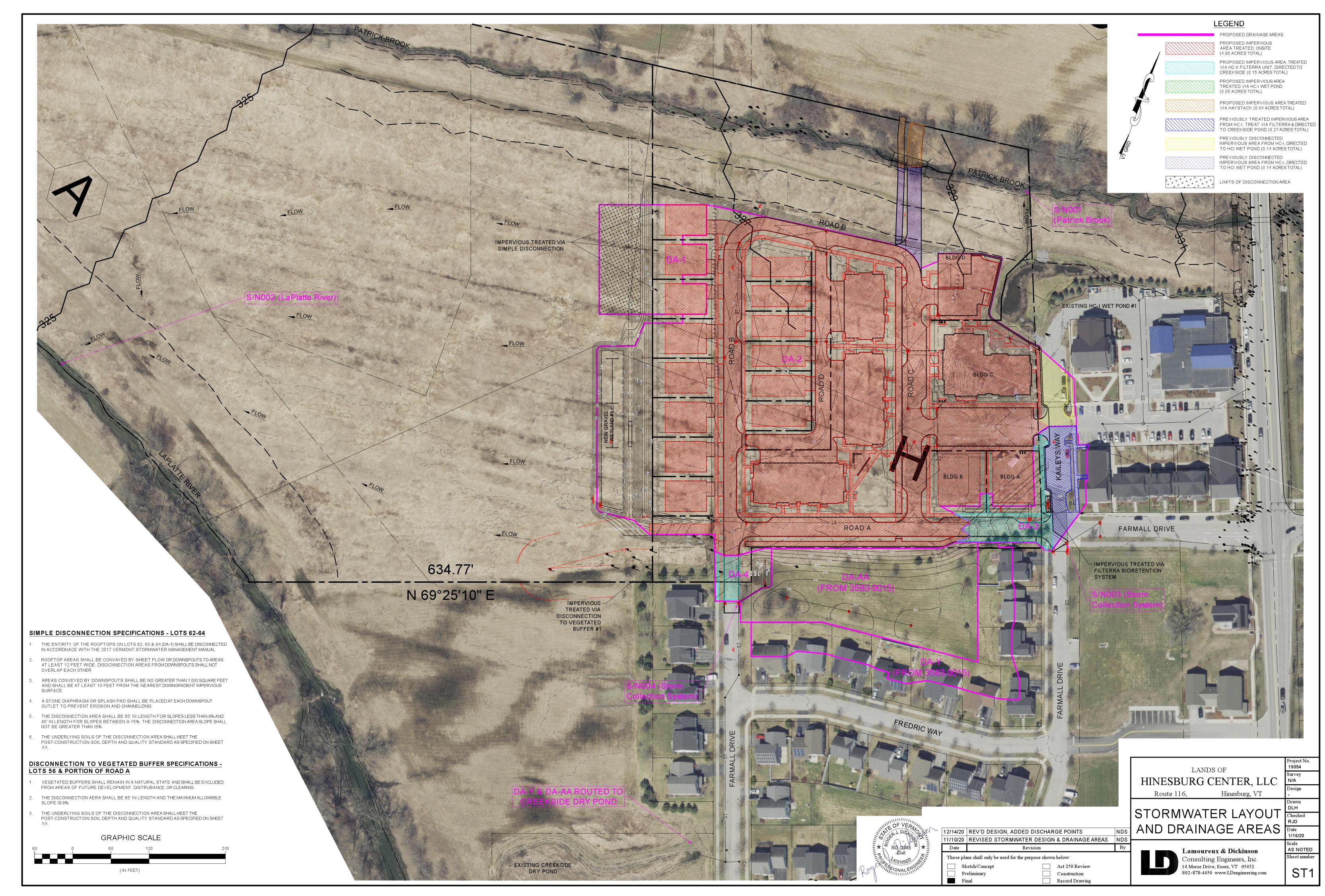

h) Soil Conservation & Amendments:

Per the requirements of the 2017 Vermont Stormwater Management Manual a Post-Construction Soil Depth and Quality Plan will be submitted with the final application. This plan delineates the limits of disturbance and the appropriate soil amendments/restoration to take place during and after construction. The intent is to return all pervious areas to their natural state (or better) prior to the initiation of construction.

i) Disconnection of runoff:

Disconnection of impervious surfaces provide stormwater treatment by promoting surface sheet flow and infiltration via natural or engineered vegetation. We are proposing the use of simple disconnection of a number of rooftops which will provide treatment by conveying runoff across lawn and existing meadow space via sheet flow or guttered downspouts with splash pads. Disconnection is an ideal stormwater treatment practice when the impervious being treated does not require detention of larger storm events.

APPENDIX A SOIL TESTING LOCATIONS


WGS_1984_Web_Mercator_Auxiliary_Sphere
© Vermont Agency of Natural Resources. June 16, 2020

DISCLAIMER: This map is for general reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable. ANR and the State of Vermont make no representations of any kind, including but not limited to, the warranties of merchantability, or fitness for a particular use, nor are any such warranties to be implied with respect to the data on this map. THIS MAP IS NOT TO BE USED FOR NAVIGATION

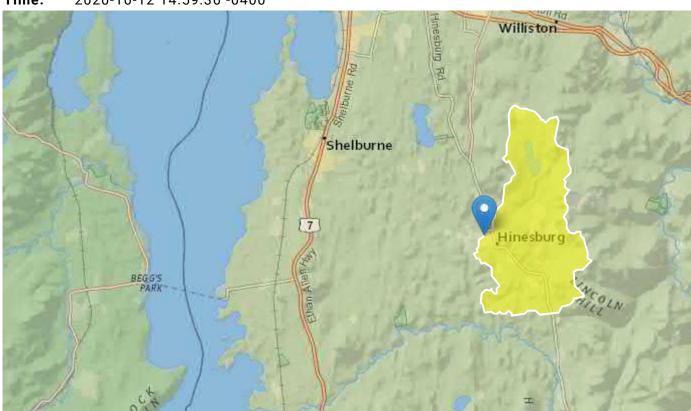
NOTES

Map created using ANR's Natural Resources Atlas

APPENDIX B STORMWATER DRAINAGE AREA MAP

APPENDIX C LAPLATTE RIVER DRAINAGE MAP

10/12/2020 StreamStats


StreamStats Report

Region ID: VT

Workspace ID: VT20201012185920629000

Clicked Point (Latitude, Longitude): 44.33290, -73.11807

Time: 2020-10-12 14:59:36 -0400

Basin Character	istics		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	17	square miles
LC06STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	5.79	percent
PRECPRIS10	Basin average mean annual precipitation for 1981 to 2010 from PRISM	41.3	inches

10/12/2020 StreamStats

Peak-Flow Statistics Parameters [Statewide Peak Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	17	square miles	0.18	689
LC06STOR	Percent Storage from NLCD2006	5.79	percent	0	18.5
PRECPRIS10	Mean Annual Precip PRISM 1981 2010	41.3	inches	33.5	70.4

Peak-Flow Statistics Flow Report[Statewide Peak Flow]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SEp
2 Year Peak Flood	377	ft^3/s	216	659	34.8
5 Year Peak Flood	580	ft^3/s	326	1030	36.1
10 Year Peak Flood	734	ft^3/s	397	1360	38.6
25 Year Peak Flood	955	ft^3/s	489	1860	42.5
50 Year Peak Flood	1140	ft^3/s	564	2310	44.9
100 Year Peak Flood	1340	ft^3/s	641	2800	47.3
200 Year Peak Flood	1560	ft^3/s	711	3420	50.8
500 Year Peak Flood	1880	ft^3/s	807	4380	55.2

Peak-Flow Statistics Citations

Olson, S.A.,2014, Estimation of flood discharges at selected annual exceedance probabilities for unregulated, rural streams in Vermont, with a section on Vermont regional skew regression, by Veilleux, A.G.: U.S. Geological Survey Scientific Investigations Report 2014–5078, 27 p. plus appendixes. (http://pubs.usgs.gov/sir/2014/5078/)

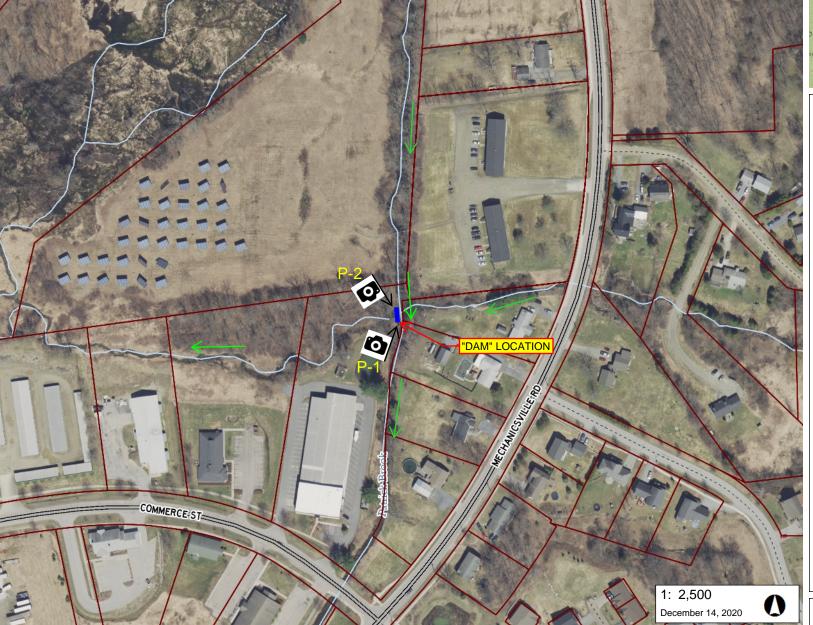
USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

10/12/2020 StreamStats

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0



Drainage Area to LaPlatte

Vermont Agency of Natural Resources

vermont.gov

LEGEND

Parcels (standardized)

Roads

Interstate

US Highway; 1

State Highway

Town Highway (Class 1)

Town Highway (Class 2,3)

Town Highway (Class 4)

State Forest Trail

National Forest Trail

Legal Trail

Private Road/Driveway

— Proposed Roads

Stream/River

Stream

Intermittent Stream

Town Boundary

PHOTO LOCATION & DIRECTION

NOTES

імар #1

127.0 0 64.00 127.0 Meters

WGS_1984_Web_Mercator_Auxiliary_Sphere 1" = 208 Ft. 1cm = 25 Meters

© Vermont Agency of Natural Resources THIS MAP IS NOT TO BE USED FOR NAVIGATION

DISCLAIMER: This map is for general reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable. ANR and the State of Vermont make no representations of any kind, including but not limited to, the warranties of merchantability, or fitness for a particular use, nor are any such warranties to be implied with respect to the data on this map.

WGS_1984_Web_Mercator_Auxiliary_Sphere

© Vermont Agency of Natural Resources

Drainage Area to LaPlatte

Vermont Agency of Natural Resources

208

1cm =

THIS MAP IS NOT TO BE USED FOR NAVIGATION

25

vermont.gov

LEGEND Parcels (standardized)

Roads
Interstate

US Highway; 1

State Highway

Town Highway (Class 1)

Town Highway (Class 2,3)

Town Highway (Class 4)

State Forest Trail

National Forest Trail

Legal Trail

Private Road/Driveway

— Proposed Roads

Stream/River

Stream

Intermittent Stream

Town Boundary

PHOTO LOCATION & DIRECTION

> FLOW DIRECTION

SEGMENT/TRIBUTARY NOT APPARENT

NOTES

Map #2

DISCLAIMER: This map is for general reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable. ANR and the State of Vermont make no representations of any kind, including but not limited to, the warranties of merchantability, or fitness for a particular use, nor are any such warranties to be implied with respect to the data on this map.

Photo #1 - Patrick Brook "dam" looking north

Photo #2 - Patrick Brook "dam" looking southeast

Photo #3 - south of 765 Mechanicsville Rd looking south

Photo #4 - across from Hinesburg Cemetery entrance looking south

APPENDIX D STANDARD COMPLIANCE WORKBOOK

Project Name	Hinesburg Center - Phase II
--------------	-----------------------------

The name above will appear on all the discharge point tabs

Site	Sum	ma	ry
------	-----	----	----

Do not fill this tab out, apart from the project name and notes. It will auto-populated based on the values on the discharge point tabs. Discharge points (SN) will only show on the summary if an area has been entered on that tab. Areas listed below are those seeking permit coverage.

	Total		DA1	DA2	DA3	DA4
	New	5.03	0.22	4.60	0.16	0.05
ns	Redeveloped	0.00	0.00	0.00	0.00	0.00
Impervious	Existing 0.17		0.00	0.00	0.17	0.00
bei	Previously					
<u>=</u>	Authorized	0.00	0.00	0.00	0.00	0.00
	Total	5.20	0.22	4.60	0.33	0.05
	Site Area	8.09	0.64	6.85	0.46	0.14
	Latitud	е	44.33051	44.33051	44.33403	44.33328
	Longitude		-73.11897	-73.11897	-73.11341	-73.11512
	Receivir	ng Water	LaPlatte River	LaPlatte River	Town stormwate r system to The Canal	Town stormwate r system to The Canal

Recharge

	Total	DA1	DA2	DA3	DA4
Required	0.0056	0.0000	0.0021	0.0035	0.0000
Provided	0.0192	0.0192	0.0000	0.0000	0.0000
Standard met?	Yes	n/a	No	No	n/a

Notes:

Water Quality

	Total	DA1	DA2	DA3	DA4
Required	0.4237	0.0192	0.3735	0.0267	0.0043
Provided	0.3885	0.0192	0.3650	0.0000	0.0043
Standard met?	No	Yes	No	No	Yes

A minimum WQ $_{V}$ of 0.2" ($P*R_{V}$) is required for sites with low impervious (<16.67%). This calculation has not been incorporated into this workbook. Designers should check that the minimum WQ $_{V}$ has been met for their site.

Ν	lotes	•
٠,		

Channel Protection

=					
j j	Total	DA1	DA2	DA3	DA4
Standard Applies?		No	No	Yes	Yes
Waiver		≥10 sq mi	≥10 sq mi	n/a	n/a
Method		n/a	n/a	Extended Detention	Extended Detention
		0.0245	0.4965	0.0392	0.0059
T _v Provided	0.0192	0.0192	0.0000	0.0000	0.0000
Notes:					
Overhank Flood	Drotosti				
Overbank Flood I	Protection		DA2	D42	DA4
Chamale	Annlina	DA1	DA2	DA3	DA4
Standard			No	Yes	Yes
	ev Q (cfs)		0	1.77	0.42
Routed, Post-De	v Q (cfs)	0	0	0.05	0.02
	Waiver	≥10 sq mi	≥10 sq mi	n/a	n/a
Notes:					
E Louis Elouis					
Extreme Flood Pr	otection		542		544
C		DA1	DA2	DA3	DA4
Standard			No	No	No
	ev Q (cfs)		0	0	0
Routed, Post-De	v Q (cts)		0	0	0
	Waiver	< 10 ac impervious	< 10 ac impervious	< 10 ac impervious	< 10 ac impervious
Notes:					

Last Updated 8/28/2018 Summary: Page 2 of 19

Vermont Operational Stormwater Permit - Standards Compliance Workbook	

Last Updated 8/28/2018 Summary: Page 3 of 19

Information	Dunais et manua [Hinaa	house Camban Dh	II	1
at carial numba	· · · · · ·	Hines		iase II	1
					1
					1
_	· · · · ·				-
legrees to live c	Jecimai piaces) [-/3.1103/		
* Preciptation	values shall be	obtained from	NOAA Atlas 14		
WQ Storm	1 yr, 24 hr	10 yr, 24 hr	100 yr, 24 hr		
1.00	1.99	3.40	5.08		
lse (acres)					
Α	В	С	D	Total]
0.000	0.000	0.000	0.000	0.000	
0.000	0.000	0.000	0.640	0.640	
0.000	0.000	0.000	0.000	0.000	
0.000	0.000	0.000	0.000	0.000	
y authorized un	der 2002 VSMM	•	· 1	0.000	
		Tot	al Pre Site Area	0.640	
Use (acres)	В	C	l _D l	Total	%]
					1
					-
					34.4%
0.000	0.000	0.002	0.220		
0.000	0.000	0.000	0.000	0.000	0.0%
0.000					
	Existing Imper	vious Not for Po	ermit Coverage	0.000	0.0%
		Redevelo	ped Impervious	0.000	0.0%
Imperv	ious previously a	authorized und	ler 2002 VSMM	0.000	
			Total Site Area	0.640	
	Total Im	npervious for Po	ermit Coverage	0.220	
			Ī		0.007
		Net Redu	ced Impervious	0.000	0.0%
Red	uced Existing Im		· .	0.000	0.0% 0.0%
Red	uced Existing Im		· .		-
Red	uced Existing Im		· .		-
	uced Existing Im		· .		-
Red	uced Existing Im		edevelopment)		-
	uced Existing Im		edevelopment) Average	0.000	-
	Pre		Average Catchment Slope, Y (%)	0.000 Hydraulic	-
	Name of redegrees to five of the service of the ser	Project name nt serial number (e.g. S/N 001) Name of receiving water degrees to five decimal places) Preciptation values shall be WQ Storm 1 yr, 24 hr 1.00 1.99 DON USE (acres) A B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 y authorized under 2002 VSMIN USE (acres) A B 0.000	Project name nt serial number (e.g. S/N 001) Name of receiving water degrees to five decimal places) Preciptation values shall be obtained from WQ Storm 1 yr, 24 hr 1.00 1.99 3.40 Total Impervious for Preciptation of the decimal places of th	Project name Hinesburg Center - Project name S/N001 (DA-1) Name of receiving water LaPlatte River degrees to five decimal places 44.33051 degrees to five decimal places -73.11897 * Preciptation values shall be obtained from NOAA Atlas 14 WQ Storm 1 yr, 24 hr 10 yr, 24 hr 100 yr, 24 hr 1.00 1.99 3.40 5.08	Project name Hinesburg Center - Phase I SyN001 (DA-1) SyN001 (DA-1) Name of receiving water LaPlatte River degrees to five decimal places degrees to five decimal places

Runoff Calculations			1 yr, 24-hr	10 yr, 24-hr	100 yr, 24-hr	
Predeve		0.0758	0.1483			
Pre-routed, post deve	elopment runoff	volume (ac-ft)	0.0501	0.1095	0.1884	
		_		-		
Tier 1/Runoff Reduction	Practices					
List all Tier 1 practices below v	with the associated	d treatment volur	me (T $_{V}$). The T	$_{\scriptscriptstyle V}$ will be applied to	o all treatment stan	ndarc
except for Green Roofs, which		charge or water q	uality credit. Ple	ease include the a	ppropriate STP	
worksheet(s) with the applica				T	1	
Practice	T _V (ac-ft)	Prac	tice	T _v (ac-ft)		
Simple Disconnection	0.019					
					J	
Runoff Reduction Calcul	ations					
		WO	CD	0	0	
Standard	Re	WQ	СР	Q _{P10}	Q _{P100}	
T _V Required (ac-ft)		0.0192	0.0245	0.0337	0.0401	
T _v Provided (ac-ft)	0.0192	0.0192	0.0192	0.0192	0.0192	
T _V Remaining (ac-ft)	0.0000	0.0000	0.0053	0.0145	0.0209	
Standard met with HCM?	n/a	Yes	No	No	No	
		-		_		
Post-Development CN		91	88	87	86	
CN_{adj}	n/a	n/a	81	82	82	
Pre-Development CN	n/a	n/a	78	78	78	
Groundwater Recharge	Standard (Re)					
Standard Applicable?	O Vos. No.	Reason recharg	e not required	HSG I	O Soils	
Standard Applicable:	O les © 140	(if N	No is selected)	:	3 30113	
Re_V	0.0000					
Standard met with Tier 1	n/a					
Practices?						
Recharge Notes:						
	Site wide Group	dwater Pechar	ga Standard m	et via simple dis	connect (DA-1)	
	Site wide Gloui	iawater netridi}	50 Standard III	ict via sirriple uis	COMPECT (DA-1).	

Water Quality Treatmen	t Standard (W	/Q)		
	(ac-ft)			Apply Reduction?
WQ _V - New & Existing	0.0192	% Net Reduction	0.0%	No Yes
WQ _{v -} Redevelopment	0.0000	% Removed Existing Impervious (Redevelopment)	0.0%	No Yes
Total WQ _v	0.0192	, ' ' '		
WQ _V met with Tier 1 practices	0.0192	•	ious treated by disconnection?	
WQ_V to be met with Tier 2			disconnection.	
and/or Tier 3 practices	N/A			
		•	WQ _v Provided	
	Tior 2 &	3 Water Quality Practice	(ac-ft)	Tier
	Tiel 2 &	5 Water Quality Fractice	(ac-rt)	Tiei
		Total WQ _v Provided (ac-ft)	0.0000	ac-ft
		Is the WQ _v Standard met?	Yes	
				I
Water Quality Notes:				
Channel Protection Stan	dard (CP)			_
Standard Applicable?	O Var. O Na	Waiver (if No is selected):	Direct dischar	ge to drainage
Standard Applicable:	Yes O No	i	area ≥1	.0 sq.mi
Standard Met with HCM?	No	The channel protection standard I credit to fully meet HCM or provid		
Provide Extended	0.031	ac-ft		
Detention for:	0.031			
Warm or Cold Water	Cold	→ Provide:	12 hours o	f extended
Fishery?			dete	ntion
See the Vermont Water Qu	-)R
<u>cold water</u>	r designations			Extended Detention
			Method (§2.2.5	5.4) is being used.
Extended Detention STP:				
Modeling Info: When demons	trating CP compl	iance with extended detention in a	hydrologic mode	el, use the CN and T $_{\it C}$
		er 1 practice. The CN _{Adj} takes into		
achieved through Tier 1 practi	ces. The T $_{C}$ is ca	lculated by the watershed lag met	hod using CN _{Adj}	as CN'.
CN_{Adj}	81	Post Development T _C (min)	2.5	(Watershed
1				Lag Method)
Channel Protection Notes:				
Channel Protection Notes:				

Overbank Flood Protecti	Overbank Flood Protection (Q _{P10})							
Standard Applicable?	Yes No	Waiver (if No is selected):	Direct discharg	ge to drainage				
Standard Applicable:	Yes Wild	waiver (ii ivo is selected).	area ≥1	0 sq.mi				
		The QP10 standard has not been f	=					
Standard Met with HCM?	No	post development peak runoff doe		development peak runoff				
CTD I		for the 10 yr, 24 hour storm event.						
STP used:		have a sate (afa)						
Pre-development peak discharge rate (cfs)								
Pre-routed, post-development peak discharge rate (cfs) Routed, post-development peak discharge rate (cfs)								
Routea, post-develop	ment peak disc	narge rate (cts)						
Modelina Info: When demons	tratina O com	pliance in a hydrologic model, use	the following CN	and T a helow if the				
		practice. The CN $_{Adj}$ takes into acc						
		lculated by the watershed lag met						
Pre-Development CN (Flow-			3 Au					
weighted composite)	78	Pre Development T _C (min)	5.5	(Watershed				
		Deal Dealle and T (ada)		Lag Method)				
CN_{Adj}	82	Post Development T _C (min)	2.4	,				
Overbank Flood Notes:								
Overbank Hood Notes.								
Extreme Flood Protectio	n (Q _{P100})							
Standard Applicable?	Yes • No	Waiver (if No is selected):	<10 acres i	mpervious				
	C les C lis							
Chair dand Nach with LICNAN	NIa	The extreme standard has not bee	= =					
Standard Met with HCM?	No	ensure post development peak rui runoff for the 100 yr, 24 hour stori		eea pre aevelopment peak				
STP used:		ranojj joi tile 100 yr, 24 hour stori	n event.					
	ment peak disc	harge rate (cfs)						
Pre-routed, post-develop	•							
Routed, post-develop	•	• •						
Nouteu, post develop	ment peak aise	narge rate (crs)						
Modelina Info: When demons	tratina Q _{P100} cor	npliance in a hydrologic model, use	the followina CN	I and T $_{c}$ below, if the				
		tice. The CN _{Adj} takes into account						
		alculated by the watershed lag me						
Pre-Development CN (Flow-	_							
weighted composite)	78	Pre Development T _C (min)	5.5	(Watershed				
				Lag Method)				
CN_{Adj}	82	Post Development T _C (min)	2.4	o ,				
Fytromo Fland Nation								
Extreme Flood Notes:								

General Discharge Point	Information					1
Project name				Hinesburg Center - Phase II		
				S/N001 (DA-2)		
		eceiving water		LaPlatte River		-
Latitude (decimal o	_	· · · · · · · · · · · · · · · · · · ·		44.33051		-
Longitude (decimal o	degrees to five (decimal places)		-73.11897		J
Precipitation Data	·	values shall be			1	
Storm	WQ Storm	1 yr, 24 hr	10 yr, 24 hr	100 yr, 24 hr		
Precipitation (inches)	1.00	1.99	3.40	5.08		
Drainage Area Informati	on					
Pre Development Land U						
Landuse	Α	В	С	D	Total	
Grass	0.000	0.000	0.030	0.000	0.030]
Meadow	0.000	0.000	0.120	6.600	6.720]
Woods	0.000	0.000	0.000	0.000	0.000]
Existing Impervious		0.000	0.100	0.000	0.100	
Impervious previousl	y authorized un	der 2002 VSMN	•		0.000	
			Tot	al Pre Site Area	6.850	J
Post Development Land	Uso (acros)					%
Landuse	A	В	С	D	Total	70
Grass	0.000	0.000	0.150	2.100	2.250	1
Meadow	0.000	0.000	0.000	0.000	0.000	1
Woods	0.000	0.000	0.000	0.000	0.000	1
New Impervious	0.000	0.000	0.100	4.500	4.600	67.2%
Existing for Permit						1
Coverage (Treated to New	0.000	0.000	0.000	0.000	0.000	0.0%
Standards)						
· •		Existing Imper	vious Not for P	ermit Coverage	0.000	0.0%
			Redevelo	ped Impervious	0.000	0.0%
	Imperv	ious previously	authorized und	ler 2002 VSMM	0.000	
				Total Site Area	6.850]
		Total In	npervious for P	ermit Coverage	4.600]
			Net Redu	ced Impervious	0.000	0.0%
	Red	uced Existing Im	pervious (for r	edevelopment)	0.100	100.0%
Information for Calculati	ng T _C by the			Average		
Watershed Lag Method				Catchment	Hydraulic	
				Slope, Y (%)	Length, I (ft)	_
			e Development		663.07]
		Post	t Development	5.5	663.07	J

Runoff Calculations			1 yr, 24-hr	10 yr, 24-hr	100 yr, 24-hr
Predeve	elopment runoff vo	olume (ac-ft)	0.2815	0.8213	1.5971
Pre-routed, post deve	elopment runoff vo	olume (ac-ft)	0.7781	1.5011	2.4053
_					
Tier 1/Runoff Reduction					
List all Tier 1 practices below t					
except for Green Roofs, which worksheet(s) with the applica		arge or water (quality credit. Ple	ease include the a _l	opropriate STP
Practice	T _V (ac-ft)	Prac	ctice	T _V (ac-ft)]
Tuctice	· v (do · c)	1140		ι γ (ασ τεγ	
Runoff Reduction Calcul	ations				
Standard	Re	WQ	СР	Q _{P10}	Q _{P100}
T _V Required (ac-ft)	0.0021	0.3735	0.4965	0.6798	0.8083
T _v Provided (ac-ft)	0.0000	0.0000	0.0000	0.0000	0.0000
T _V Remaining (ac-ft)	0.0021	0.3735	0.4965	0.6798	0.8083
Standard met with HCM?	No	No	No	No	No
Post-Development CN	n/a	96	94	93	92
CN_{adj}	n/a	96	94	93	92
Pre-Development CN	n/a	n/a	78	78	78
Groundwater Recharge	Standard (Re)				
Standard Applicable?	Yes No				
Re _v					
Standard met with Tier 1			•		eet the recharge
Practices?	110		_	area. Aaa more iite-wide. (check	e infiltrating practice
Recharge Notes:		ness recharge	e is being met s	nte-wide. (Check	summary tub)
necharge notes.					
	Site wide Ground	water Rechar	ge Standard m	et via simple dis	connect (DA-1).

Water Quality Treatmen	t Standard (W	(Q)			
	(ac-ft)		<i>F</i>	Apply Reduction	?
WQ _V - New & Existing	0.3735	% Net Reduction	0.0%	● No	
WQ _{v -} Redevelopment	0.0000	% Removed Existing Impervious (Redevelopment)	100.0%	● No ○ Yes	Max 25% applied
Total WQ _v	0.3735	,,			1
WQ _V met with Tier 1 practices	0.0000	-	rious treated by disconnection?)
WQ_V to be met with Tier 2	0.3735		disconnection.		
and/or Tier 3 practices	0.3735				
			WQ _v Provided		Ī
NOTE: Please include a	Tier 2 &	3 Water Quality Practice	(ac-ft)	Tier	
copy of the appropriate		Gravel Wetland	0.3650	Tier 2	
STP worksheet(s) with the					
application.					
		Total WQ _V Provided (ac-ft)	0.3650	ac-ft	
		Is the WQ _V Standard met?	No	1	
NOTE: Add more w	ater quality pro	nctices unless site balancing is be	eing used. (Ched	ck summary tab)
Water Quality Notes:					
Channel Protection Stan	dard (CP)				
		Waiver (if No is selected):	Direct dischar	ge to drainage	1
Standard Applicable?	Yes No	waiver (ii No is selected).	area ≥1	LO sq.mi	
Standard Met with HCM?	No	The channel protection standard h credit to fully meet HCM or provid	= -		ase Tv
Provide Extended Detention for:	0.778	ac-ft			
Warm or Cold Water Fishery?	``	→ Provide:		f extended	
See the Vermont Water Qu		i s for warm and		DR	i
	r designations			e Extended Dete	ention
		_		5.4) is being use	
Extended Detention STP:			·	, •	
Madaling Info: When demons	trating CD compl	iance with extended detention in a	, hudrologic mode	al usa tha CN and	ΙΤ
	= :	er 1 practice. The CN _{Adj} takes into			-
		lculated by the watershed lag met			, and
garmerea ameagn nei 2 praea]		(Watershed	
CN_{Adj}	94	Post Development T _C (min)	5.8	Lag Method)	
Channel Protection Notes:				Lug ivicai.ca,	

Overbank Flood Protecti	Overbank Flood Protection (Q _{P10})							
Standard Applicable?	Yes No	Waiver (if No is selected):	Direct discharg	ge to drainage				
Standard Applicable:	Yes W NO	walver (ii wo is selected).	area ≥1	0 sq.mi				
		The QP10 standard has not been f						
Standard Met with HCM?	No	post development peak runoff doe	=	development peak runoff				
CTD I		for the 10 yr, 24 hour storm event.						
STP used:								
Pre-development peak discharge rate (cfs)								
Pre-routed, post-development peak discharge rate (cfs) Routed, post-development peak discharge rate (cfs)								
Routea, post-develop	ment peak disc	narge rate (crs)						
Modelina Info: When demons	tratina O com	pliance in a hydrologic model, use	the following CN	and T - helow if the				
		practice. The CN $_{Adj}$ takes into according						
		lculated by the watershed lag meti						
Pre-Development CN (Flow-			3 Auj					
weighted composite)	78	Pre Development T _C (min)	11.4	(Watershed				
		Deal Dealle and T (ata)		Lag Method)				
CN_{Adj}	93	Post Development T _C (min)	6.0	,				
Overbank Flood Notes:								
Overbank Hood Notes.								
Extreme Flood Protectio	n (Q _{P100})							
Standard Applicable?	Yes • No	Waiver (if No is selected):	<10 acres i	mpervious				
	C les C lis							
Chair dand Nach with LICNAN	NIa	The extreme standard has not bee	= =					
Standard Met with HCM?	No	ensure post development peak rur runoff for the 100 yr, 24 hour stori		eea pre aevelopment peak				
STP used:		Tunojj joi tile 100 yr, 24 hour stori	ii event.					
	ment peak disc	harge rate (cfs)						
Pre-routed, post-develop	•	• •						
Routed, post-develop	•	•						
Nouteu, post develop	ment peak aise	narge rate (crs)						
Modelina Info: When demons	tratina O 1100 cor	npliance in a hydrologic model, use	e the following CN	l and T c below. if the				
		tice. The CN _{Adj} takes into account						
		alculated by the watershed lag me						
Pre-Development CN (Flow-	_		,					
weighted composite)	78	Pre Development T _C (min)	11.4	(Watershed				
				Lag Method)				
CN_{Adj}	92	Post Development T _C (min)	6.2	o ,				
Fytromo Fland Nation								
Extreme Flood Notes:								

Canaral Discharge Baint	Information					
General Discharge Point	intormation	D:	11:	hara Cantan Di		1
Disahayaa naiy		Project name	Hinesburg Center - Phase II S/N003 (DA-3)			-
Discharge poir		r (e.g. S/N 001)	Town storm	a Tha Canal		
Latituda (dasimal s		eceiving water	Town Storm	nwater system to	o The Canal	
Latitude (decimal o	_	•		44.33403		
Longitude (decimal o	legrees to five (decimai piaces)		-73.11341]
Precipitation Data	* Preciptation	values shall be	obtained from	NOAA Atlas 14		
Storm	WQ Storm	1 yr, 24 hr	10 yr, 24 hr	100 yr, 24 hr		
Precipitation (inches)	1.00	1.99	3.40	5.08		
Drainage Area Information	on					
Pre Development Land U	se (acres)					
Landuse	Α	В	С	D	Total	
Grass	0.000	0.000	0.060	0.000	0.060	
Meadow	0.000	0.000	0.000	0.230	0.230]
Woods	0.000	0.000	0.000	0.000	0.000	1
Existing Impervious	0.000	0.000	0.170	0.000	0.170	
Impervious previousl	y authorized un	der 2002 VSMN		- 1	0.000	
			Tot	al Pre Site Area	0.460	
Post Development Land	lse (acres)					%
Landuse	A	В	С	D	Total	1
Grass	0.000	0.000	0.060	0.070	0.130	1
Meadow	0.000	0.000	0.000	0.000	0.000	1
Woods	0.000	0.000	0.000	0.000	0.000	1
New Impervious	0.000	0.000	0.000	0.160	0.160	34.8%
Existing for Permit						1
Coverage (Treated to New	0.000	0.000	0.170	0.000	0.170	37.0%
Standards)						
		Existing Imper	vious Not for P	ermit Coverage	0.000	0.0%
			Redevelo	ped Impervious	0.000	0.0%
	Imperv	ious previously	authorized und	ler 2002 VSMM	0.000]
				Total Site Area	0.460]
		Total In	•	ermit Coverage	0.330	
				ced Impervious	0.000	0.0%
	Red	luced Existing Im	npervious (for r	edevelopment)	0.000	0.0%
Information for Calculati	ng T . hv the			Average		
	ing ic by the			Catchment	Hydraulic	
Watershed Lag Method				Slope, Y (%)	Length, I (ft)	
		Pre	e Development		131.16	1
			t Development		131.16	1
			•			4

Runoff Calculations			1 yr, 24-hr	10 yr, 24-hr	100 yr, 24-hr
Predeve	lopment runoff vo	lume (ac-ft)	0.0359	0.0780	0.1340
Pre-routed, post deve	lopment runoff vo	lume (ac-ft)	0.0535	0.1020	0.1626
				-	•
Tier 1/Runoff Reduction	Practices				
ist all Tier 1 practices below v	vith the associated tr	eatment volu	me (T $_{V}$). The T $_{v}$, will be applied to	o all treatment standa
except for Green Roofs, which		rge or water o	quality credit. Ple	ease include the ap	opropriate STP
worksheet(s) with the applicat	П			T	Ī
Practice	T _v (ac-ft)	Prac	ctice	T _V (ac-ft)	
Runoff Reduction Calcula	-t:				
			-	•	•
Standard	Re	WQ	СР	Q _{P10}	Q _{P100}
T _V Required (ac-ft)	0.0035	0.0267	0.0392	0.0555	0.0675
T _V Provided (ac-ft)	0.0000	0.0000	0.0000	0.0000	0.0000
T _V Remaining (ac-ft)	0.0035	0.0267	0.0392	0.0555	0.0675
Standard met with HCM?	No	No	No	No	No
Post-Development CN	n/a	97	94	93	93
CN_{adj}	n/a	97	94	93	93
Pre-Development CN	n/a	n/a	88	86	86
•					
Groundwater Recharge S	Standard (Re)				
Standard Applicable?	♠ V ○ N-				
Standard Applicable:	Yes O No				
Re_{V}	0.0035				
	NC	TE: Treatme	nt provided is	insufficient to m	eet the recharge
Standard met with Tier 1	No sta	ndard withir	n this drainage	area. Add more	infiltrating practice
Practices?	uni	ess recharge	e is being met s	ite-wide. (check	summary tab)
Recharge Notes:					
	611.		Class I	. 1 . 2 . 2 . 1 . 12	(5.4)
	Site wide Groundy	vater Rechar	ge Standard m	et via simple dis	connect (DA-1).

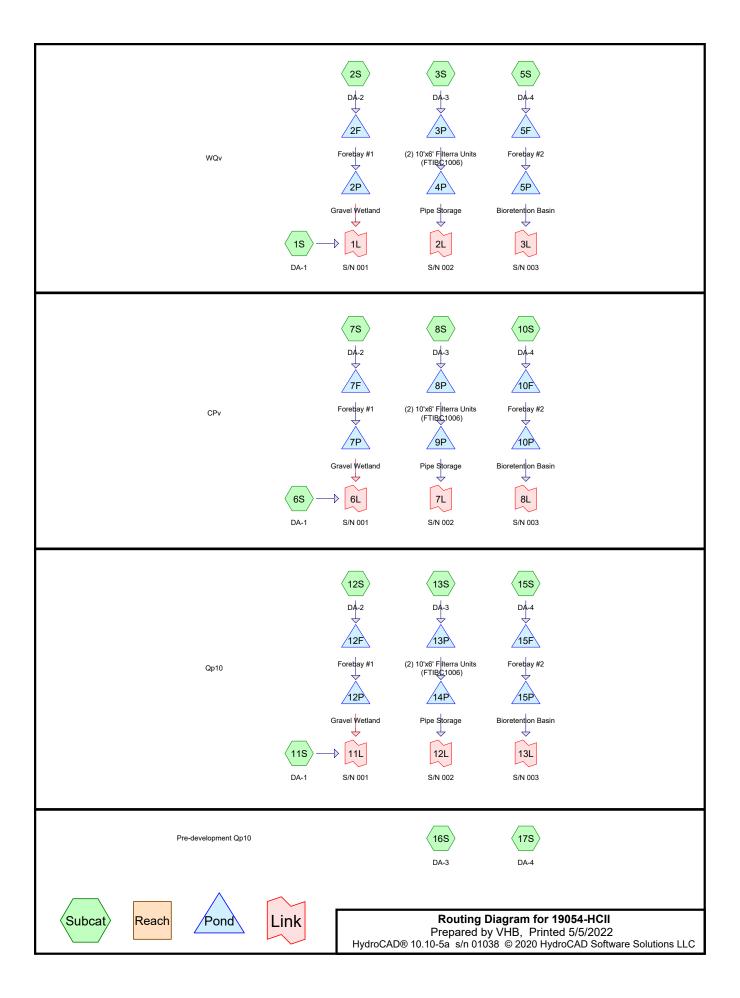
Water Quality Treatmen	t Standard (W	(Q)		
	(ac-ft)			Apply Reduction?
WQ _v - New & Existing	0.0267	% Net Reduction	0.0%	● No
WQ _{V -} Redevelopment	0.0000	% Removed Existing Impervious (Redevelopment)	0.0%	No Yes
Total WQ _v	0.0267			
WQ _V met with Tier 1	0.0000	•	vious treated by disconnection?	
WQ_v to be met with Tier 2			uisconnection:	O restance and
and/or Tier 3 practices	0.0267			
			WQ _v Provided	
	Tier 2 &	3 Water Quality Practice	(ac-ft)	Tier
		Total WQ _v Provided (ac-ft)	0.0000	ac-ft
		Is the WQ _V Standard met?	No	
NOTE: Add more w	ater quality pro	ctices unless site balancing is b		I ck summary tab)
		g proprietary devices to provide		
		d are two Contech Filterra Uni		
	received appro	val as an Alternative Treatmen	t Practice as a T	ier 2 Practice.
Channel Protection Stan	dard (CP)			
Standard Applicable?	Yes No			
Standard Met with HCM?	No	The channel protection standard a credit to fully meet HCM or provid		
Provide Extended Detention for:	0.053	ac-ft		
		40.0		
Warm or Cold Water Fishery?	>	→ Provide:		f extended
Fishery?	Warm	→ Provide:	dete	f extended ntion OR
Fishery? See the Vermont Water Qu	Warm	Provide:	dete C The Alternative	ntion DR e Extended Detention
Fishery? See the Vermont Water Qu	Warm uality Standards r designations	Provide:	dete C The Alternative	ntion DR
Fishery? See the Vermont Water Que cold water Extended Detention STP:	Warm uality Standards r designations Underground	Provide: S for warm and Pipe Storage	dete C The Alternative Method (§2.2.	ntion OR e Extended Detention 5.4) is being used.
Fishery? See the Vermont Water Que cold water Extended Detention STP: Modeling Info: When demons	Warm uality Standards r designations Underground trating CP comple	Provide: s for warm and Pipe Storage iance with extended detention in a	dete C The Alternative Method (§2.2.	ntion OR E Extended Detention 5.4) is being used. El, use the CN and T _C
Fishery? See the Vermont Water Que cold water Extended Detention STP: Modeling Info: When demons below if the practice being modeling in the practice be	Warm uality Standards r designations Underground trating CP completed is not a Tide	Provide: S for warm and Pipe Storage	dete C The Alternative Method (§2.2.8) a hydrologic mode a account the rede	ntion OR E Extended Detention 5.4) is being used. El, use the CN and T _C uction in runoff volume
Fishery? See the Vermont Water Que cold water Extended Detention STP: Modeling Info: When demons below if the practice being modeling and cold water co	Warm uality Standards r designations Underground trating CP completed is not a Tide	Provide: For warm and Pipe Storage iance with extended detention in a cer 1 practice. The CN Adj takes into	The Alternative Method (§2.2	ntion OR E Extended Detention 5.4) is being used. El, use the CN and T _C uction in runoff volume as CN'. (Watershed
Fishery? See the Vermont Water Que cold water Extended Detention STP: Modeling Info: When demons below if the practice being made achieved through Tier 1 practice.	Warm uality Standards r designations Underground trating CP comple delled is not a Tie ces. The T _C is ca	Provide: for warm and Pipe Storage iance with extended detention in a cer 1 practice. The CN Adj takes into local local and the watershed lag met	The Alternative Method (§2.2	ntion OR E Extended Detention 5.4) is being used. El, use the CN and T _C uction in runoff volume as CN'.

Overbank Flood Protecti	on (Q _{P10})			
Standard Applicable?	● Yes ○ No			
Standard Met with HCM?	No	The QP10 standard has not been fu post development peak runoff doe. for the 10 yr, 24 hour storm event.		
STP used:	Underground P	Pipe Storage		
	ment peak disc	·		
Pre-routed, post-develop	•			
Routed, post-develop				
practice used to meet Q $_{ extstyle{P10}}$ is $ extstyle{I}$	not itself a Tier 1	ppliance in a hydrologic model, use to practice. The CN _{Adj} takes into acco lculated by the watershed lag meth	ount the reductio	n in runoff volume
Pre-Development CN (Flow- weighted composite)	86	Pre Development T _c (min)	3.6	(Watershed
CN_{Adj}	93	Post Development T _C (min)	1.8	Lag Method)
Overbank Flood Notes:	Minimum orific	ce size used.		
Extreme Flood Protectio	n (Q _{P100})			
Standard Applicable?	Yes No	Waiver (if No is selected):	<10 acres i	mpervious
Standard Met with HCM?	No	The extreme standard has not been ensure post development peak run runoff for the 100 yr, 24 hour storn	off does not exce	
STP used:		•		
Pre-develop	ment peak disc	harge rate (cfs)		
Pre-routed, post-develop	ment peak disc	harge rate (cfs)		
Routed, post-develop	ment peak disc	harge rate (cfs)		
practice used to meet Q $_{ extstyle{P100}}$ is	not a Tier 1 prac	mpliance in a hydrologic model, use tice. The CN _{Adj} takes into account alculated by the watershed lag met	the reduction in	runoff volume achieved
Pre-Development CN (Flow- weighted composite)	86	Pre Development T _c (min)	3.7	(Watershed
CN_{Adj}	93	Post Development T _C (min)	1.8	Lag Method)
Extreme Flood Notes:				

Canaral Discharge Daint	Information					
General Discharge Point	Intormation	5: -	Hinns	l Canton Di		1
Discharge neir	مطمس ما اعتداد	Project name				1
Discharge poir		r (e.g. S/N 001)	Town storm	S/N003 (DA-4)	a The Canal	
Latituda (dacimal d		eceiving water	TOWN SLOTH	nwater system to	o Trie Cariai	
Latitude (decimal o	_	· · · · · ·		44.33328		1
Longitude (decimal o	legrees to live o	decimai piaces) [-73.11512		
Precipitation Data	* Preciptation	r values shall be	obtained from	NOAA Atlas 14		
Storm	WQ Storm	1 yr, 24 hr	10 yr, 24 hr	100 yr, 24 hr		
Precipitation (inches)	1.00	1.99	3.40	5.08		
Drainage Area Information	 on					
Pre Development Land U						
Landuse	Α	В	С	D	Total]
Grass	0.000	0.000	0.000	0.000	0.000	
Meadow	0.000	0.000	0.000	0.140	0.140	
Woods	0.000	0.000	0.000	0.000	0.000	1
Existing Impervious	0.000	0.000	0.000	0.000	0.000	1
Impervious previously	y authorized un	der 2002 VSMN	=	·	0.000	
			Tot	al Pre Site Area	0.140	
Post Development Land	Uso (soros)					%
Landuse	A A	В	С	D	Total	% 1
Grass	0.000	0.000	0.000	0.090	0.090	
Meadow	0.000	0.000	0.000	0.000	0.000	1
Woods	0.000	0.000	0.000	0.000	0.000	1
New Impervious	0.000	0.000	0.000	0.050	0.050	35.7%
Existing for Permit			-			
Coverage (Treated to New	0.000	0.000	0.000	0.000	0.000	0.0%
Standards)			-		•	
- 		Existing Imper	vious Not for Pe	ermit Coverage	0.000	0.0%
			Redevelo	ped Impervious	0.000	0.0%
	Imperv	vious previously	authorized und	er 2002 VSMM	0.000	
				Total Site Area	0.140	
		Total In	npervious for Pe	ermit Coverage	0.050	
			Net Redu	ced Impervious	0.000	0.0%
	Red	luced Existing Im	npervious (for re	edevelopment)	0.000	0.0%
						-
Information for Calculati	ng T _C by the			Average		
Watershed Lag Method	0 0 7			Catchment	Hydraulic	
Trateronea Eag method				Slope, Y (%)	Length, I (ft)	
		Pre	e Development	5	64.24	
		Post	t Development	15	64.24	

Vermont Operational Stormwater Permit - Standards Compliance Workbook

Runoff Calculations			1 yr, 24-hr	10 yr, 24-hr	100 yr, 24-hr
Predeve	elopment runoff v	olume (ac-ft)	0.0056	0.0166	0.0324
Pre-routed, post deve	elopment runoff v	olume (ac-ft)	0.0115	0.0249	0.0424
Tier 1/Runoff Reduction	Practices				
List all Tier 1 practices below w	with the associated	treatment volui	me (T $_{ m V}$). The T $_{ m V}$, will be applied to	o all treatment stando
except for Green Roofs, which		arge or water q	uality credit. Ple	ease include the a	opropriate STP
worksheet(s) with the applica	T T			Τ	1
Practice	T _V (ac-ft)	Prac	tice	T _V (ac-ft)	
- "					
Runoff Reduction Calcul					
Standard	1	WQ	СР	Q _{P10}	Q _{P100}
T _v Required (ac-ft)	0.0000	0.0043	0.0059	0.0083	0.0100
T _v Provided (ac-ft)	0.0000	0.0000	0.0000	0.0000	0.0000
T _V Remaining (ac-ft)	0.0000	0.0043	0.0059	0.0083	0.0100
Standard met with HCM?	n/a	Yes	No	No	No
Post-Development CN	n/a	91	88	87	87
CN_{adj}	n/a	91	88	87	87
Pre-Development CN	n/a	n/a	78	78	78
Groundwater Recharge	Standard (Re)				
_	R	eason recharg	ge not required	1156.5	2.6-11-
Standard Applicable?	Yes • No	(if N	No is selected)	: HSG L	O Soils
Re _v	0.0000				
·					
Standard met with Tier 1	n/a				
Practices?					
Recharge Notes:					
	Site wide Ground	water Rechar	ge Standard m	et via simple dis	connect (DA-1).


Vermont Operational Stormwater Permit - Standards Compliance Workbook

Water Quality Treatmen	t Standard (W	/Q)		
	(ac-ft)			Apply Reduction?
WQ _v - New & Existing	0.0043	% Net Reduction	0.0%	● No ○ Yes
WQ _{v -} Redevelopment	0.0000	% Removed Existing Impervious (Redevelopment)	0.0%	No Yes
Total WQ _v	0.0043	mipervious (nedevelopment)		
WQ _v met with Tier 1	0.0000	·	ious treated by	
practices WQ_V to be met with Tier 2		1	disconnection?	Tes (WQV IIIe)
and/or Tier 3 practices	N/A			
			WQ _v Provided	
NOTE: Please include a	Tier 2 &	3 Water Quality Practice	(ac-ft)	Tier
copy of the appropriate		n (not designed to infiltrate)	0.0043	Tier 2
STP worksheet(s) with the application.				
		Total WQ _v Provided (ac-ft)	0.0043	ac-ft
		Is the WQ _v Standard met?	Yes	
Water Quality Notes:				
Channel Protection Stan	dard (CD)			
Standard Applicable?	Yes No			
Standard Met with HCM?	No	The channel protection standard h credit to fully meet HCM or provid		
Provide Extended Detention for:	0.012	ac-ft		
Warm or Cold Water Fishery?	Cold Warm	→ Provide:		f extended ntion
See the Vermont Water Qu	uality Standards	s for warm and		DR
	designations	_		Extended Detention
			Method (§2.2.5	5.4) is being used.
Extended Detention STP:	Bioretent	tion Basin		
Modeling Info: When demons	tratina CP compl	iance with extended detention in a	hydrologic mode	el use the CN and T
		er 1 practice. The CN $_{Adj}$ takes into		
		lculated by the watershed lag met		
CN _{Adj}	88	Post Development T _C (min)	0.7	(Watershed
	00	1 03t Development (Clinn)	0.7	Lag Method)
Channel Protection Notes:				
	All runoff detai	ned and filtering through media	а.	

Vermont Operational Stormwater Permit - Standards Compliance Workbook

Overbank Flood Protecti	on (Q _{P10})						
Standard Applicable?	● Yes ○ No						
Standard Met with HCM?	No	The QP10 standard has not been fu post development peak runoff doe. for the 10 yr, 24 hour storm event.	=				
STP used:	Bioretention Ba	asin					
	ment peak disc						
Pre-routed, post-develop	ment peak disc	harge rate (cfs) 0.61					
Routed, post-develop	ment peak disc	harge rate (cfs) 0.02					
practice used to meet Q $_{ extst{P10}}$ is i	Modeling Info: When demonstrating Q_{P10} compliance in a hydrologic model, use the following CN and T_C below, if the practice used to meet Q_{P10} is not itself a Tier 1 practice. The CN $_{Adj}$ takes into account the reduction in runoff volume achieved through Tier 1 practices. The T_C is calculated by the watershed lag method using CN $_{Adj}$ as CN'.						
Pre-Development CN (Flow- weighted composite)	78	Pre Development T _c (min)	1.7	(Watershed			
CN_{Adj}	87	Post Development T _C (min)	0.7	Lag Method)			
Overbank Flood Notes:							
Extreme Flood Protectio	n (Q _{P100})	_					
Standard Applicable?	Yes No	Waiver (if No is selected):	<10 acres i	mpervious			
Standard Met with HCM?	No	The extreme standard has not been ensure post development peak run runoff for the 100 yr, 24 hour storn	off does not exce				
STP used:		•					
Pre-develop	ment peak disc	harge rate (cfs)					
Pre-routed, post-develop	ment peak disc	harge rate (cfs)					
Routed, post-develop	ment peak disc	harge rate (cfs)					
<u>Modeling Info:</u> When demonstrating Q_{P100} compliance in a hydrologic model, use the following CN and T_C below, if the practice used to meet Q_{P100} is not a Tier 1 practice. The CN $_{Adj}$ takes into account the reduction in runoff volume achieved through runoff reduction practices. The T_C is calculated by the watershed lag method using CN $_{Adj}$ as CN'.							
Pre-Development CN (Flow- weighted composite)	78	Pre Development T _c (min)	1.7	(Watershed			
CN_{Adj}	87	Post Development T _C (min)	0.7	Lag Method)			
Extreme Flood Notes:							

APPENDIX E STATE TREATMENT MODELLING (HCII - WQv, CPv, Qp10)

Prepared by VHB
HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022

Page 1

Time span=0.00-120.00 hrs, dt=0.01 hrs, 12001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: DA-1 Runoff Area = 0.640 ac 0.00% Impervious Runoff Depth = 0.36"

Flow Length=160' Slope=0.0833 '/' Tc=1.7 min CN=91 Runoff=0.49 cfs 0.019 af

Subcatchment2S: DA-2 Runoff Area=6.850 ac 0.00% Impervious Runoff Depth=0.63"

Flow Length=663' Slope=0.0550 '/' Tc=5.2 min CN=96 Runoff=7.75 cfs 0.360 af

Subcatchment3S: DA-3 Runoff Area=0.460 ac 0.00% Impervious Runoff Depth=0.71"

Flow Length=131' Slope=0.0450 '/' Tc=1.5 min CN=97 Runoff=0.64 cfs 0.027 af

Subcatchment5S: DA-4 Runoff Area=0.140 ac 0.00% Impervious Runoff Depth=0.36"

Flow Length=64' Slope=0.1500 '/' Tc=0.6 min CN=91 Runoff=0.11 cfs 0.004 af

Pond 2F: Forebay#1 Peak Elev=328.27' Storage=3,842 cf Inflow=7.75 cfs 0.360 af

Outflow=7.49 cfs 0.360 af

Pond 2P: Gravel Wetland Peak Elev=328.03' Storage=18,270 cf Inflow=7.49 cfs 0.360 af

Primary=0.08 cfs 0.360 af Secondary=0.00 cfs 0.000 af Outflow=0.08 cfs 0.360 af

Pond 3P: (2) 10'x6' Filterra Units (FTIBC1006) Peak Elev=328.83' Storage=74 cf Inflow=0.64 cfs 0.027 af

Outflow=0.39 cfs 0.027 af

Pond 4P: Pipe Storage Peak Elev=326.31' Storage=0.014 af Inflow=0.39 cfs 0.027 af

Outflow=0.03 cfs 0.027 af

Pond 5F: Forebay #2 Peak Elev=328.53' Storage=314 cf Inflow=0.11 cfs 0.004 af

Outflow=0.10 cfs 0.004 af

Pond 5P: Bioretention Basin Peak Elev=328.39' Storage=105 cf Inflow=0.10 cfs 0.004 af

Outflow=0.00 cfs 0.004 af

Link 1L: S/N 001 Inflow=0.54 cfs 0.379 af

Primary=0.54 cfs 0.379 af

Link 2L: S/N 002 Inflow=0.03 cfs 0.027 af

Primary=0.03 cfs 0.027 af

Link 3L: S/N 003 Inflow=0.00 cfs 0.004 af

Primary=0.00 cfs 0.004 af

Total Runoff Area = 8.090 ac Runoff Volume = 0.410 af Average Runoff Depth = 0.61" 100.00% Pervious = 8.090 ac 0.00% Impervious = 0.000 ac

Printed 5/5/2022

Page 2

Summary for Subcatchment 1S: DA-1

Runoff = 0.49 cfs @ 11.92 hrs, Volume= 0.019 af, Depth= 0.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr WQv Rainfall=1.00"

_	Area	(ac) C	N Des	cription		
*	<u>0</u> .	640 9	1 Mod	ified CN		
_	0.	640 9	100.	00% Pervi	ious Area	
	т.	l4l-	01	\	0	Description
	Tc (min)	Length	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	(min)	(feet)	(11/11)	(It/Sec)	(018)	
	1.7	160	0.0833	1.56		Lag/CN Method, LAG

Summary for Subcatchment 2S: DA-2

Runoff = 7.75 cfs @ 11.96 hrs, Volume= 0.360 af, Depth= 0.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr WQv Rainfall=1.00"

_	Area	(ac) C	N Des	cription		
*	<mark>6</mark> .	850	96 Mod	lified CN		
	6.	850 9	96 100.	.00% Pervi	ous Area	
	_				_	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.2	663	0.0550	2.13		Lag/CN Method, LAG

Summary for Subcatchment 3S: DA-3

Runoff = 0.64 cfs @ 11.92 hrs, Volume= 0.027 af, Depth= 0.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr WQv Rainfall=1.00"

_	Area	(ac) C	N Des	cription		
*	0.	460 9	97 Mod	lified CN		
	0.	460 9	97 100.	00% Perv	ious Area	
	_		01		0 ''	
		Length		,		Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.5	131	0.0450	1.47		Lag/CN Method, LAG

Page 3

Summary for Subcatchment 5S: DA-4

[49] Hint: Tc<2dt may require smaller dt

0.11 cfs @ 11.91 hrs, Volume= 0.004 af, Depth= 0.36" Runoff

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr WQv Rainfall=1.00"

	Area	(ac) (CN Des	scription		
*	<mark>0</mark> .	140	91 Mo	dified CN		
	0.	140	91 100	.00% Perv	ious Area	
	т.	141.	01	V - 1 14	0	Description
	Tc (min)	Length (feet)	Slope (ft/ft)	(ft/sec)	Capacity (cfs)	Description
_	0.6	64	0.1500		(013)	Lag/CN Method, LAG
	0.0	04	0.1500	1.14		Lay/CN Method, LAG

Summary for Pond 2F: Forebay #1

6.850 ac, 0.00% Impervious, Inflow Depth = 0.63" for WQv event Inflow Area =

7.75 cfs @ 11.96 hrs, Volume= Inflow 0.360 af

7.49 cfs @ 11.98 hrs, Volume= 0.360 af, Atten= 3%, Lag= 1.1 min Outflow

Primary = 7.49 cfs @ 11.98 hrs, Volume= 0.360 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Starting Elev= 328.00' Surf.Area= 2,628 sf Storage= 3,057 cf

Peak Elev= 328.27 @ 11.98 hrs Surf.Area= 3,233 sf Storage= 3,842 cf (785 cf above start)

Plug-Flow detention time= 119.7 min calculated for 0.290 af (80% of inflow)

Center-of-Mass det. time= 3.2 min (813.5 - 810.3)

Volume	Invert	Avai	l.Storage	Storage Description	on	
#1	326.00'	•	13,093 cf	Forebay Storage	(Irregular)Listed	d below (Recalc)
Elevation (feet)	Sı	urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
326.00		513	516.0	0	0	513
327.00 328.00		1,557 2,628	529.0 541.0	988 2,069	988 3,057	1,714 2,867
329.00		5,198	591.0	3,841	6,898	7,407
330.00		7,249	696.0	6,195	13,093	18,180
Device R	Routing	In	vert Outle	et Devices	3,057/1	6,296 = 19% WQv IN FOREBAY
#1 P	rimary	328	.00' 20.0	' long x 18.0' brea	adth Stone Spill	way

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=7.47 cfs @ 11.98 hrs HW=328.27' (Free Discharge) **1=Stone Spillway** (Weir Controls 7.47 cfs @ 1.39 fps)

Printed 5/5/2022 Page 4

Summary for Pond 2P: Gravel Wetland

[42] Hint: Gap in defined storage above volume #1 at 326.08'

[81] Warning: Exceeded Pond 2F by 0.02' @ 20.12 hrs

Inflow Area = 6.850 ac, 0.00% Impervious, Inflow Depth = 0.63" for WQv event

Inflow 7.49 cfs @ 11.98 hrs, Volume= 0.360 af

Outflow 0.08 cfs @ 19.95 hrs, Volume= 0.360 af, Atten= 99%, Lag= 478.0 min

Primary 0.08 cfs @ 19.95 hrs, Volume= 0.360 af 0.00 hrs, Volume= Secondary = 0.00 cfs @ 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Starting Elev= 326.42' Surf.Area= 8,003 sf Storage= 6.634 cf

Peak Elev= 328.03' @ 19.95 hrs Surf.Area= 17,852 sf Storage= 18,270 cf (11,636 cf above start)

Plug-Flow detention time= 2,451.3 min calculated for 0.207 af (58% of inflow)

Center-of-Mass det. time= 1,544.7 min (2,358.2 - 813.5)

1,545/1,440 = 107% OF 24-HR **EXTENDED DETENTION PROVIDED**

Volume Invert Avail.Storage Storage Description #1 323.83' 6,634 cf 2.25' Stone Storage (Irregular)Listed below (Recalc) 16,585 cf Overall x 40.0% Voids #2 326.75' 33,290 cf Surface Storage (Irregular)Listed below (Recalc)

39,924 cf Total Available Storage 6,634/16,296 = 41% WQv IN STONE VOIDS

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
323.83	6,757	545.0	0	0	6,757
326.08	8,003	573.0	16,585	16,585	9,548
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
326.75	8,380	568.0	0	0	8,380
327.00	8,664	571.0	2,130	2,130	8,687
328.00	9,820	584.0	9,236	11,366	10,014
329.00	10,914	602.0	10,362	21,729	11,813
330.00	12,221	612.0	11,561	33,290	12,954

Device	Routing	Invert	Outlet Devices
#1	Primary	326.42'	18.0" Round 18" Outlet Pipe
	•		L= 11.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 326.42' / 326.25' S= 0.0155 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
#2	Device 1	326.42'	1.6" Vert. 1.6" Orifice C= 0.600 Limited to weir flow at low heads
#3	Device 1	328.05'	12.0" W x 6.0" H Vert. Two 12"(W)x6"(H) Orifice X 2.00 C= 0.600
			Limited to weir flow at low heads
#4	Secondary	328.05'	20.0' long x 10.0' breadth Stone Spillway
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60

Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Volume

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022

Page 5

```
Primary OutFlow Max=0.08 cfs @ 19.95 hrs HW=328.03' (Free Discharge) 1=18" Outlet Pipe (Passes 0.08 cfs of 7.18 cfs potential flow)
```

2=1.6" Orifice (Orifice Controls 0.08 cfs @ 5.98 fps)
3=Two 12"(W)x6"(H) Orifice (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=326.42' (Free Discharge) 4=Stone Spillway (Controls 0.00 cfs)

Summary for Pond 3P: (2) 10'x6' Filterra Units (FTIBC1006)

Inflow Area = 0.460 ac, 0.00% Impervious, Inflow Depth = 0.71" for WQv event

Inflow = 0.64 cfs @ 11.92 hrs, Volume= 0.027 af

Outflow = 0.39 cfs @ 11.83 hrs, Volume= 0.027 af, Atten= 40%, Lag= 0.0 min

Primary = 0.39 cfs @ 11.83 hrs, Volume= 0.027 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs / 2

Peak Elev= 328.83' @ 11.97 hrs Surf.Area= 120 sf Storage= 74 cf

Plug-Flow detention time= 3.7 min calculated for 0.027 af (100% of inflow)

Center-of-Mass det. time= 0.8 min (796.0 - 795.2)

Invert

328.83' - 328.21' = 0.62' = 7.4" < 9" MAXIMUM PONDING RECOMMENDED BY 2017 VSMM

#1	328.21'	132 cf 6.00'W x 10.00'L x 1.10'H Vault x 2	
Device	Routing	Invert Outlet Devices	

Avail.Storage Storage Description

Device	Routing	Invert	Outlet Devices
#1	Device 3	328.21'	140.000 in/hr Filtration over Surface area from 328.20' - 328.22'
			Excluded Surface area = 0 sf
#2	Device 3	328.96'	10.0" Horiz. 10" Overflow Pipe X 2.00 C= 0.600
			Limited to weir flow at low heads
#3	Primary	325.71'	10.0" Round 10" PVC Pipe L= 54.0' Ke= 0.200
	•		Inlet / Outlet Invert= 325.71' / 324.98' S= 0.0135 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=0.39 cfs @ 11.83 hrs HW=328.22' (Free Discharge)

3=10" PVC Pipe (Passes 0.39 cfs of 4.31 cfs potential flow)

1=Filtration (Exfiltration Controls 0.39 cfs)
2=10" Overflow Pipe (Controls 0.00 cfs)

Summary for Pond 4P: Pipe Storage

[79] Warning: Submerged Pond 3P Primary device # 3 INLET by 0.60'

Inflow Area = 0.460 ac, 0.00% Impervious, Inflow Depth = 0.70" for WQv event

Inflow = 0.39 cfs @ 11.83 hrs, Volume= 0.027 af

Outflow = 0.03 cfs @ 12.99 hrs, Volume= 0.027 af, Atten= 93%, Lag= 69.4 min

Primary = 0.03 cfs @ 12.99 hrs, Volume= 0.027 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

19054-HCII

Prepared by VHB

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022 Page 6

Peak Elev= 326.31' @ 12.99 hrs Surf.Area= 0.019 ac Storage= 0.014 af

Plug-Flow detention time= 256.6 min calculated for 0.027 af (100% of inflow)

Center-of-Mass det. time= 256.7 min (1,052.7 - 796.0)

Volume	Invert	Avail.Storage	Storage Description	
#1	325.25'	0.066 af	48.0" Round 48" Pipe	
			L= 230.0'	

Device	Routing	Invert	Outlet Devices
#1	Device 3	325.25'	1.0" Vert. 1" Orifice C= 0.600 Limited to weir flow at low heads
#2	Device 3	328.95'	5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Primary	325.25'	15.0" Round 15" Outlet Pipe
			L= 50.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 325.25' / 324.98' S= 0.0054 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior. Flow Area= 1.23 sf

Primary OutFlow Max=0.03 cfs @ 12.99 hrs HW=326.31' (Free Discharge)

-3=15" Outlet Pipe (Passes 0.03 cfs of 3.07 cfs potential flow)

-1=1" Orifice (Orifice Controls 0.03 cfs @ 4.86 fps)

-2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 5F: Forebay #2

0.140 ac, 0.00% Impervious, Inflow Depth = 0.36" for WQv event Inflow Area =

Inflow 0.11 cfs @ 11.91 hrs, Volume= 0.004 af

Outflow 0.10 cfs @ 11.92 hrs, Volume= 0.004 af, Atten= 5%, Lag= 0.7 min

0.10 cfs @ 11.92 hrs, Volume= Primary = 0.004 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Starting Elev= 328.50' Surf.Area= 295 sf Storage= 306 cf

Peak Elev= 328.53 @ 11.92 hrs Surf.Area= 300 sf Storage= 314 cf (8 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= 1.3 min (848.7 - 847.3)

Volume	Inv	ert Avai	il.Storage	Storage Descripti	ion 18	1/187 = 97% WQv I	N FOREBAY
#1	326.	50'	478 cf	Forebay Storage	e (Irregular)Listed	d below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
326.5	50	43	46.0	0	0	43	
327.0	00	93	53.0	33	33	103	
328.0	00	210	65.0	148	181	231	
329.0	00	395	87.0	298	478	507	
Device	Routing	ln	vert Outl	et Devices			
#1	Primary	328	3.50' 10.0	' long x 5.0' brea	dth Stone Spillw	<i>r</i> ay	

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

2.50 3.00 3.50 4.00 4.50 5.00 5.50

Coef. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65

Printed 5/5/2022 Page 7

2.65 2.67 2.66 2.68 2.70 2.74 2.79 2.88

Primary OutFlow Max=0.10 cfs @ 11.92 hrs HW=328.53' (Free Discharge) -1=Stone Spillway (Weir Controls 0.10 cfs @ 0.38 fps)

Summary for Pond 5P: Bioretention Basin

Inflow Area = 0.140 ac. 0.00% Impervious, Inflow Depth = 0.36" for WQv event

0.10 cfs @ 11.92 hrs, Volume= 0.004 af Inflow

0.00 cfs @ 11.61 hrs, Volume= 0.004 af, Atten= 98%, Lag= 0.0 min Outflow =

Primary = 0.00 cfs @ 11.61 hrs, Volume= 0.004 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 328.39' @ 15.99 hrs Surf. Area = 378 sf Storage = 105 cf

Plug-Flow detention time= 545.0 min calculated for 0.004 af (100% of inflow)

Avail.Storage Storage Description

Center-of-Mass det. time= 545.0 min (1,393.6 - 848.7)

Invert

328.39' - 328.00' = 0.39' = 4.7" < 9" MAXIMUMPONDING RECOMMENDED BY 2017 VSMM

#1	328.00'	978 cf	Surface Ponding ((Irregular)Listed be	low (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
328.00	180	72.0	0	0	180
329.00	844	160.0	471	471	1,809
329.50	1,195	183.0	507	978	2,442

Device	Routing	Invert	Outlet Devices
#1	Device 4	328.00'	0.500 in/hr Filtration over Surface area from 327.99' - 328.01'
			Excluded Surface area = 0 sf
#2	Device 4	328.90'	1.0" Vert. 1" Orifice C= 0.600 Limited to weir flow at low heads
#3	Device 4	329.25'	6.0" Horiz. 6" Cast-iron dome inlet grate C= 0.600
			Limited to weir flow at low heads
#4	Primary	324.75'	12.0" Round Pipe Outlet
			L= 40.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 324.75' / 324.50' S= 0.0063 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 11.61 hrs HW=328.02' (Free Discharge)

-4=Pipe Outlet (Passes 0.00 cfs of 6.02 cfs potential flow)

-1=Filtration (Exfiltration Controls 0.00 cfs)

-2=1" Orifice (Controls 0.00 cfs)

-3=6" Cast-iron dome inlet grate (Controls 0.00 cfs)

Summary for Link 1L: S/N 001

Inflow Area = 0.00% Impervious, Inflow Depth = 0.61" for WQv event

0.54 cfs @ 11.92 hrs, Volume= 0.379 af Inflow

0.54 cfs @ 11.92 hrs, Volume= 0.379 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Page 8

Summary for Link 2L: S/N 002

Inflow Area = 0.460 ac, 0.00% Impervious, Inflow Depth = 0.70" for WQv event

Inflow = 0.03 cfs @ 12.99 hrs, Volume= 0.027 af

Primary = 0.03 cfs @ 12.99 hrs, Volume= 0.027 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Summary for Link 3L: S/N 003

Inflow Area = 0.140 ac, 0.00% Impervious, Inflow Depth = 0.36" for WQv event

Inflow = 0.00 cfs @ 11.61 hrs, Volume= 0.004 af

Primary = 0.00 cfs @ 11.61 hrs, Volume= 0.004 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC Printed 5/5/2022

Page 1

Time span=0.00-120.00 hrs, dt=0.01 hrs, 12001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment6S: DA-1 Runoff Area=0.640 ac 0.00% Impervious Runoff Depth=0.96"

Flow Length=160' Slope=0.0833 '/' Tc=1.9 min CN=88 Runoff=1.27 cfs 0.051 af

Subcatchment7S: DA-2 Runoff Area=6.850 ac 0.00% Impervious Runoff Depth=1.39"

Flow Length=663' Slope=0.0550 '/' Tc=5.7 min CN=94 Runoff=16.45 cfs 0.792 af

Subcatchment8S: DA-3 Runoff Area=0.460 ac 0.00% Impervious Runoff Depth=1.39"

Flow Length=131' Slope=0.0450 '/' Tc=1.7 min CN=94 Runoff=1.26 cfs 0.053 af

Subcatchment10S: DA-4 Runoff Area=0.140 ac 0.00% Impervious Runoff Depth=0.96"

Flow Length=64' Slope=0.1500 '/' Tc=0.7 min CN=88 Runoff=0.29 cfs 0.011 af

Pond 7F: Forebay#1 Peak Elev=328.44' Storage=4,451 cf Inflow=16.45 cfs 0.792 af

Outflow=16.03 cfs 0.792 af

Pond 7P: Gravel Wetland Peak Elev=328.34' Storage=21,416 cf Inflow=16.03 cfs 0.792 af

Primary=1.10 cfs 0.426 af Secondary=7.95 cfs 0.366 af Outflow=9.06 cfs 0.792 af

Pond 8P: (2) 10'x6' Filterra Units (FTIBC1006) Peak Elev=329.10' Storage=106 cf Inflow=1.26 cfs 0.053 af

Outflow=1.25 cfs 0.053 af

Pond 9P: Pipe Storage Peak Elev=327.14' Storage=0.031 af Inflow=1.25 cfs 0.053 af

Outflow=0.04 cfs 0.053 af

Pond 10F: Forebay #2 Peak Elev=328.55' Storage=317 cf Inflow=0.29 cfs 0.011 af

Outflow=0.28 cfs 0.011 af

Pond 10P: Bioretention Basin Peak Elev=328.88' Storage=379 cf Inflow=0.28 cfs 0.011 af

Outflow=0.00 cfs 0.011 af

Link 6L: S/N 001 Inflow=9.23 cfs 0.843 af

Primary=9.23 cfs 0.843 af

Link 7L: S/N 002 Inflow=0.04 cfs 0.053 af

Primary=0.04 cfs 0.053 af

Link 8L: S/N 003 Inflow=0.00 cfs 0.011 af

Primary=0.00 cfs 0.011 af

Total Runoff Area = 8.090 ac Runoff Volume = 0.907 af Average Runoff Depth = 1.35" 100.00% Pervious = 8.090 ac 0.00% Impervious = 0.000 ac

Printed 5/5/2022 Page 2

Summary for Subcatchment 6S: DA-1

Runoff = 1.27 cfs @ 11.92 hrs, Volume= 0.051 af, Depth= 0.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=1.99"

	Area	(ac)	CN	Desc	cription		
*	<u>0.</u>	640	88	Mod	ified CN		
	0.	640	88	100.	00% Pervi	ous Area	
	_		_			_	
	Tc	Length		Slope	,	Capacity	Description
	(min)	(feet)) ((ft/ft)	(ft/sec)	(cfs)	
	1.9	160	0.0	0833	1.38		Lag/CN Method, LAG

Summary for Subcatchment 7S: DA-2

Runoff = 16.45 cfs @ 11.97 hrs, Volume= 0.792 af, Depth= 1.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=1.99"

_	Area	(ac) C	N Des	cription		
4	<u>6.</u>	850 9	4 Mod	ified CN		
	6.	850 9	100.	00% Pervi	ous Area	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
-	5.7	663	0.0550	1.93		Lag/CN Method, LAG

Summary for Subcatchment 8S: DA-3

Runoff = 1.26 cfs @ 11.92 hrs, Volume= 0.053 af, Depth= 1.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=1.99"

	Area	(ac) C	<u>:N Des</u>	cription		
*	<u>0</u> .	460	94 Mod	<mark>lified C</mark> N		
_	0.	460	94 100.	.00% Pervi	ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
_	1.7	131	0.0450	1.26	•	Lag/CN Method, LAG

Printed 5/5/2022 Page 3

Summary for Subcatchment 10S: DA-4

[49] Hint: Tc<2dt may require smaller dt

0.29 cfs @ 11.91 hrs, Volume= 0.011 af, Depth= 0.96" Runoff

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=1.99"

_	Area	(ac) C	N Des	cription		
*	<mark>0.</mark>	140 8	88 Mod	ified CN		
_	0.	140 8	38 100.	00% Pervi	ious Area	
	_					
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.7	64	0.1500	1.54		Lag/CN Method, LAG

Summary for Pond 7F: Forebay #1

Inflow Area = 0.00% Impervious, Inflow Depth = 1.39" for 1 year event 6.850 ac. 16.45 cfs @ 11.97 hrs, Volume= Inflow 0.792 af

16.03 cfs @ 11.98 hrs, Volume= Outflow 0.792 af, Atten= 3%, Lag= 1.0 min 0.792 af

Primary = 16.03 cfs @ 11.98 hrs, Volume=

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Starting Elev= 328.00' Surf.Area= 2,628 sf Storage= 3,057 cf

Peak Elev= 328.44' @ 11.98 hrs Surf.Area= 3,664 sf Storage= 4,451 cf (1,393 cf above start)

Plug-Flow detention time= 70.6 min calculated for 0.721 af (91% of inflow) Center-of-Mass det. time= 2.8 min (803.3 - 800.5)

Volume	Invert A	vail.Storage	Storage Descripti	on	
#1	326.00'	13,093 cf	Forebay Storage	(Irregular)Listed	below (Recalc)
Elevation (feet)	Surf.Are (sq-f		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area
	· · · · ·	, , ,		, ,	(sq-ft)
326.00	51	3 516.0	0	0	513
327.00	1,55	7 529.0	988	988	1,714
328.00	2,62	8 541.0	2,069	3,057	2,867
329.00	5,19	8 591.0	3,841	6,898	7,407
330.00	7,24	9 696.0	6,195	13,093	18,180
Device R	outing	Invert Outl	et Devices		

#1 Primary 328.00' 20.0' long x 18.0' breadth Stone Spillway

> Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=16.00 cfs @ 11.98 hrs HW=328.44' (Free Discharge) **1=Stone Spillway** (Weir Controls 16.00 cfs @ 1.80 fps)

759/720 = 105% OF 12-HR EXTENDED

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022

Page 4

Summary for Pond 7P: Gravel Wetland

[42] Hint: Gap in defined storage above volume #1 at 326.08'

[81] Warning: Exceeded Pond 7F by 0.12' @ 12.14 hrs

Inflow Area	a =	6.850 ac,	0.00% Impervious,	Inflow Depth = 1.39"	' for 1 year event
Inflow	=	16.03 cfs @	11.98 hrs, Volume	= 0.792 af	•
Outflow	=	9.06 cfs @	12.07 hrs, Volume:	= 0.792 af, At	tten= 44%, Lag= 5.1 min
Primary	=	1.10 cfs @	12.07 hrs, Volume:	= 0.426 af	
Secondary	′ =	7.95 cfs @	12.07 hrs, Volume:	= 0.366 af	

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Starting Elev= 326.42' Surf.Area= 8,003 sf Storage= 6,634 cf

Center-of-Mass det. time= 759.1 min (1,562.4 - 803.3)

Peak Elev= 328.34' @ 12.07 hrs Surf.Area= 18,190 sf Storage= 21,416 cf (14,782 cf above start)

Plug-Flow detention time= 1,043.2 min calculated for 0.639 af (81% of inflow)

Volume	Invert	Avail.Storage	Storage Description	DETENTION PROVIDED, NOT REQUIRED DUE TO LEPLATTE DRAINAGE AREA WAIVER
#1	323.83'	6,634 cf	2.25' Stone Storage (Irregal 16,585 cf Overall x 40.0%	
#2	326.75'	33,290 cf	•	

39,924 cf Total Available Storage

Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store (cubic-feet)	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)		(sq-ft)
323.83	6,757	545.0	0	0	6,757
326.08	8,003	573.0	16,585	16,585	9,548
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
326.75	8,380	568.0	0	0	8,380
327.00	8,664	571.0	2,130	2,130	8,687
328.00	9,820	584.0	9,236	11,366	10,014
329.00	10,914	602.0	10,362	21,729	11,813
330.00	12,221	612.0	11,561	33,290	12,954

Device	Routing	Invert	Outlet Devices
#1	Primary	326.42'	18.0" Round 18" Outlet Pipe
			L= 11.0' CMP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 326.42' / 326.25' S= 0.0155 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
#2	Device 1	326.42'	1.6" Vert. 1.6" Orifice C= 0.600 Limited to weir flow at low heads
#3	Device 1	328.05'	12.0" W x 6.0" H Vert. Two 12"(W)x6"(H) Orifice X 2.00 C= 0.600
			Limited to weir flow at low heads
#4	Secondary	328.05'	20.0' long x 10.0' breadth Stone Spillway
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Printed 5/5/2022

Page 5

```
Primary OutFlow Max=1.10 cfs @ 12.07 hrs HW=328.34' (Free Discharge)
```

-1=18" Outlet Pipe (Passes 1.10 cfs of 8.73 cfs potential flow)

2=1.6" Orifice (Orifice Controls 0.09 cfs @ 6.56 fps)

-3=Two 12"(W)x6"(H) Orifice (Orifice Controls 1.01 cfs @ 1.73 fps)

Secondary OutFlow Max=7.92 cfs @ 12.07 hrs HW=328.34' (Free Discharge) 4=Stone Spillway (Weir Controls 7.92 cfs @ 1.36 fps)

Summary for Pond 8P: (2) 10'x6' Filterra Units (FTIBC1006)

Inflow Area = 0.460 ac, 0.00% Impervious, Inflow Depth = 1.39" for 1 year event

Inflow = 1.26 cfs @ 11.92 hrs, Volume= 0.053 af

Outflow = 1.25 cfs @ 11.92 hrs, Volume= 0.053 af, Atten= 1%, Lag= 0.2 min

Primary = 1.25 cfs @ 11.92 hrs, Volume= 0.053 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs / 2

Peak Elev= 329.10' @ 11.92 hrs Surf.Area= 120 sf Storage= 106 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 0.6 min (797.4 - 796.8)

<u>Volume</u>	Invert	Avail.Stor	rage Storage Description
#1	328.21'	13	32 cf 6.00'W x 10.00'L x 1.10'H Vault x 2
Device	Routing	Invert	Outlet Devices
#1	Device 3	328.21'	140.000 in/hr Filtration over Surface area from 328.20' - 328.22'
			Excluded Surface area = 0 sf
#2	Device 3	328.96'	10.0" Horiz. 10" Overflow Pipe X 2.00 C= 0.600
			Limited to weir flow at low heads
#3	Primary	325.71'	10.0" Round 10" PVC Pipe L= 54.0' Ke= 0.200
			Inlet / Outlet Invert= 325.71' / 324.98' S= 0.0135 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=1.25 cfs @ 11.92 hrs HW=329.10' (Free Discharge)

-3=10" PVC Pipe (Passes 1.25 cfs of 5.04 cfs potential flow)

-1=Filtration (Exfiltration Controls 0.39 cfs)

-2=10" Overflow Pipe (Weir Controls 0.86 cfs @ 1.21 fps)

Summary for Pond 9P: Pipe Storage

[79] Warning: Submerged Pond 8P Primary device # 3 INLET by 1.43'

Inflow Area = 0.460 ac, 0.00% Impervious, Inflow Depth = 1.39" for 1 year event

Inflow = 1.25 cfs @ 11.92 hrs, Volume= 0.053 af

Outflow = 0.04 cfs @ 13.75 hrs, Volume= 0.053 af, Atten= 97%, Lag= 109.6 min

Primary = 0.04 cfs @ 13.75 hrs, Volume= 0.053 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

19054-HCII

#2

#3

Device 3

Primary

Prepared by VHB

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022 Page 6

Peak Elev= 327.14' @ 13.75 hrs Surf.Area= 0.021 ac Storage= 0.031 af

Plug-Flow detention time= 435.9 min calculated for 0.053 af (100% of inflow)

Center-of-Mass det. time= 436.0 min (1,233.4 - 797.4)

436/720 = 61% OF 12-HR EXTENDED DETENTION PROVIDED, 1" MINIMUM ORIFICE SIZE USED

Volume	Invert	Avail.Storage	Storage Descripti	on PROVIL	JED, 1 MINIMUM ORIFICE SIZE USED
#1	325.25'	0.066 af	48.0" Round 48'	' Pipe	
			L= 230.0'	-	
Device	Routing	Invert Ou	ıtlet Devices		
#1	Device 3	325.25' 1.0	" Vert. 1" Orifice	C= 0.600	Limited to weir flow at low heads

15.0" Round 15" Outlet Pipe

L= 50.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 325.25' / 324.98' S= 0.0054 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=0.04 cfs @ 13.75 hrs HW=327.14' (Free Discharge)

3=15" Outlet Pipe (Passes 0.04 cfs of 5.75 cfs potential flow)

-1=1" Orifice (Orifice Controls 0.04 cfs @ 6.55 fps)

328.95'

325.25'

-2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 10F: Forebay #2

Inflow = 0.29 cfs @ 11.91 hrs, Volume= 0.011 af

Outflow = 0.28 cfs @ 11.92 hrs, Volume= 0.011 af, Atten= 3%, Lag= 0.5 min

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Starting Elev= 328.50' Surf.Area= 278 sf Storage= 302 cf

Peak Elev= 328.55' @ 11.92 hrs Surf.Area= 289 sf Storage= 317 cf (15 cf above start)

Plug-Flow detention time= 317.9 min calculated for 0.004 af (38% of inflow)

Center-of-Mass det. time= 1.2 min (829.2 - 828.1)

Volume	Invert	Avail.S	torage	Storage Descript	ion		
#1	326.50'		470 cf	Forebay Storage	e (Irregular)Listed	below (Recalc)	
Elevation (feet)	Su	rf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
326.50		43	46.0	0	0	43	
327.00		93	53.0	33	33	103	
328.00		210	65.0	148	181	231	
328.50		278	71.0	122	302	304	
329.00		395	87.0	167	470	509	
Device F	Routing	Inver	t Outl	et Devices			

#1 Primary 328.50' 10.0' long x 5.0' breadth Stone Spillway

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50

Prepared by VHB

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022

Page 7

Coef. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65 2.65 2.67 2.66 2.68 2.70 2.74 2.79 2.88

Primary OutFlow Max=0.28 cfs @ 11.92 hrs HW=328.55' (Free Discharge) -1=Stone Spillway (Weir Controls 0.28 cfs @ 0.53 fps)

Summary for Pond 10P: Bioretention Basin

[81] Warning: Exceeded Pond 10F by 0.38' @ 24.04 hrs

Inflow Area = 0.140 ac, 0.00% Impervious, Inflow Depth = 0.96" for 1 year event

Inflow 0.28 cfs @ 11.92 hrs, Volume= 0.011 af

Outflow 0.00 cfs @ 10.70 hrs, Volume= 0.011 af, Atten= 99%, Lag= 0.0 min

Primary = 0.00 cfs @ 10.70 hrs, Volume= 0.011 af

1,675/720 = 233% OF 12-HR

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs EXTENDED DETENTION PROVIDED, Peak Elev= 328.88' @ 24.01 hrs Surf.Area= 742 sf Storage= 379 cf ALL OF CPv FILTERING THRU MEDIA

Plug-Flow detention time= 1.674.9 min calculated for 0.011 af (100% of inflow) Center-of-Mass det. time= 1,675.0 min (2,504.3 - 829.2)

Volume	Inve	rt Avail.9	Storage	Storage Description					
#1	328.00)'	978 cf	Surface Ponding	Surface Ponding (Irregular)Listed below (Recalc)				
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
328.0		180	72.0	0	0	180			
329.0	00	844	160.0	471	471	1,809			
329.5	50	1,195	183.0	507	978	2,442			
Device	Routing	Inve	ert Outle	et Devices					
#1	Device 4	328.0	0' 0.50	0 in/hr Filtration o	over Surface area	from 327.99' - 328.01'			
#2	Device 4	328.9	0' 1.0"		C= 0.600 Limited	to weir flow at low heads			
#3	Device 4	329.2			on dome inlet grate	e C= 0.600			
#4	Primary	324.7	75' 12.0 L= 4 Inlet	nited to weir flow at low heads O" Round Pipe Outlet 40.0' CPP, square edge headwall, Ke= 0.500 et / Outlet Invert= 324.75' / 324.50' S= 0.0063 '/' Cc= 0.900 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf					

Primary OutFlow Max=0.00 cfs @ 10.70 hrs HW=328.02' (Free Discharge) **-4=Pipe Outlet** (Passes 0.00 cfs of 6.02 cfs potential flow)

1=Filtration (Exfiltration Controls 0.00 cfs)

-2=1" Orifice (Controls 0.00 cfs)

-3=6" Cast-iron dome inlet grate (Controls 0.00 cfs)

Page 8

Printed 5/5/2022

Summary for Link 6L: S/N 001

Inflow Area = 7.490 ac, 0.00% Impervious, Inflow Depth = 1.35" for 1 year event

Inflow = 9.23 cfs @ 12.07 hrs, Volume= 0.843 af

Primary = 9.23 cfs @ 12.07 hrs, Volume= 0.843 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Summary for Link 7L: S/N 002

Inflow Area = 0.460 ac, 0.00% Impervious, Inflow Depth = 1.39" for 1 year event

Inflow = 0.04 cfs @ 13.75 hrs, Volume= 0.053 af

Primary = 0.04 cfs @ 13.75 hrs, Volume= 0.053 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Summary for Link 8L: S/N 003

Inflow Area = 0.140 ac, 0.00% Impervious, Inflow Depth = 0.96" for 1 year event

Inflow = 0.00 cfs @ 10.70 hrs, Volume= 0.011 af

Primary = 0.00 cfs @ 10.70 hrs, Volume= 0.011 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

<u> Page 1</u>

Time span=0.00-120.00 hrs, dt=0.01 hrs, 12001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment11S: DA-1 Runoff Area=0.640 ac 0.00% Impervious Runoff Depth=2.09"

Flow Length=160' Slope=0.0833 '/' Tc=2.0 min CN=87 Runoff=2.69 cfs 0.112 af

Subcatchment12S: DA-2 Runoff Area=6.850 ac 0.00% Impervious Runoff Depth=2.64"

Flow Length=663' Slope=0.0550 '/' Tc=6.0 min CN=93 Runoff=30.07 cfs 1.506 af

Subcatchment13S: DA-3 Runoff Area=0.460 ac 0.00% Impervious Runoff Depth=2.64"

Flow Length=131' Slope=0.0450 '/' Tc=1.8 min CN=93 Runoff=2.31 cfs 0.101 af

Subcatchment15S: DA-4 Runoff Area=0.140 ac 0.00% Impervious Runoff Depth=2.09"

Flow Length=64' Slope=0.1500 '/' Tc=0.7 min CN=87 Runoff=0.61 cfs 0.024 af

Pond 12F: Forebay #1 Peak Elev=328.67' Storage=5,339 cf Inflow=30.07 cfs 1.506 af

Outflow=29.37 cfs 1.506 af

Pond 12P: Gravel Wetland Peak Elev=328.64' Storage=24,466 cf Inflow=29.37 cfs 1.506 af

Primary=2.82 cfs 0.514 af Secondary=24.17 cfs 0.992 af Outflow=26.98 cfs 1.506 af

Pond 13P: (2) 10'x6' Filterra Units (FTIBC1006) Peak Elev=329.19' Storage=118 cf Inflow=2.31 cfs 0.101 af

Outflow=2.30 cfs 0.101 af

Pond 14P: Pipe Storage Peak Elev=328.90' Storage=0.064 af Inflow=2.30 cfs 0.101 af

Outflow=0.05 cfs 0.101 af

Pond 15F: Forebay #2 Peak Elev=328.59' Storage=327 cf Inflow=0.61 cfs 0.024 af

Outflow=0.60 cfs 0.024 af

Pond 15P: Bioretention Basin Peak Elev=329.20' Storage=651 cf Inflow=0.60 cfs 0.024 af

Outflow=0.02 cfs 0.024 af

Link 11L: S/N 001 Inflow=27.79 cfs 1.618 af

Primary=27.79 cfs 1.618 af

Link 12L: S/N 002 Inflow=0.05 cfs 0.101 af

Primary=0.05 cfs 0.101 af

Link 13L: S/N 003 Inflow=0.02 cfs 0.024 af

Primary=0.02 cfs 0.024 af

Total Runoff Area = 8.090 ac Runoff Volume = 1.743 af Average Runoff Depth = 2.59" 100.00% Pervious = 8.090 ac 0.00% Impervious = 0.000 ac

Page 2

Summary for Subcatchment 11S: DA-1

Runoff = 2.69 cfs @ 11.92 hrs, Volume= 0.112 af, Depth= 2.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.40"

	Area	(ac) (CN	Desc	cription			
*	<mark>0</mark> .	640	87	Modi	ified CN			
	0.640 87 100.00% Pervious Area							
	_		_				-	
	Tc	Length	S	lope	Velocity	Capacity	Description	
	(min)	(feet)	((ft/ft)	(ft/sec)	(cfs)		
	2.0	160	0.0	0833	1.33		Lag/CN Method, LAG	

Summary for Subcatchment 12S: DA-2

Runoff = 30.07 cfs @ 11.97 hrs, Volume= 1.506 af, Depth= 2.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.40"

	Area	(ac)	<u>CN</u>	Desc	cription			
*	<mark>6</mark> .	850	93	Mod	ified CN			
	6.850 93 100.00% Pervious Area							
	T						Description	
	Tc (min)	Length (feet)		Slope (ft/ft)	(ft/sec)	Capacity (cfs)	Description	
	6.0	663	0.	0550	1.84	, ,	Lag/CN Method, LAG	

Summary for Subcatchment 13S: DA-3

Runoff = 2.31 cfs @ 11.92 hrs, Volume= 0.101 af, Depth= 2.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.40"

_	Area	(ac) (CN Des	cription		
*	<mark>0</mark> .	460	93 Mod	dified CN		
_	0.	460	93 100	.00% Perv	ious Area	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.8	131	0.0450	1.20		Lag/CN Method, LAG

Page 3

Summary for Subcatchment 15S: DA-4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.61 cfs @ 11.91 hrs, Volume= 0.024 af, Depth= 2.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.40"

_	Area	(ac) C	N Des	cription		
*	<mark>0</mark> .	140	87 Mod	lified CN		
	0.	140	87 100.	00% Pervi	ous Area	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.7	64	0 1500	1.49	•	Lag/CN Method, LAG

Summary for Pond 12F: Forebay #1

Inflow Area = 6.850 ac, 0.00% Impervious, Inflow Depth = 2.64" for 10 year event

Inflow = 30.07 cfs @ 11.97 hrs, Volume= 1.506 af

Outflow = 29.37 cfs @ 11.99 hrs, Volume= 1.506 af, Atten= 2%, Lag= 1.0 min

Primary = 29.37 cfs @ 11.99 hrs, Volume= 1.506 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Starting Elev= 328.00' Surf.Area= 2,628 sf Storage= 3,057 cf

Peak Elev= 328.67' @ 11.99 hrs Surf.Area= 4,253 sf Storage= 5,339 cf (2,282 cf above start)

Plug-Flow detention time= 45.8 min calculated for 1.436 af (95% of inflow)

Center-of-Mass det. time= 2.5 min (789.9 - 787.4)

Volume	Inve	ert Ava	il.Storage	Storage Descripti	on		
#1	326.0	00'	13,093 cf	Forebay Storage	e (Irregular)Listed	below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
326.0	0	513	516.0	0	0	513	
327.0	0	1,557	529.0	988	988	1,714	
328.0	0	2,628	541.0	2,069	3,057	2,867	
329.0	00	5,198	591.0	3,841	6,898	7,407	
330.0	00	7,249	696.0	6,195	13,093	18,180	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	328		' long x 18.0' bre	•	•	

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63

Primary OutFlow Max=29.30 cfs @ 11.99 hrs HW=328.67' (Free Discharge) 1=Stone Spillway (Weir Controls 29.30 cfs @ 2.19 fps)

Printed 5/5/2022 Page 4

Summary for Pond 12P: Gravel Wetland

[42] Hint: Gap in defined storage above volume #1 at 326.08'

[81] Warning: Exceeded Pond 12F by 0.16' @ 12.12 hrs

Inflow Area = 6.850 ac, 0.00% Impervious, Inflow Depth = 2.64" for 10 year event

Inflow 29.37 cfs @ 11.99 hrs, Volume= 1.506 af

1.506 af, Atten= 8%, Lag= 2.0 min

Outflow = 26.98 cfs @ 12.02 hrs, Volume=

Primary = 2.82 cfs @ 12.02 hrs, Volume= 0.514 af Secondary = 24.17 cfs @ 12.02 hrs, Volume= 0.992 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Starting Elev= 326.42' Surf.Area= 8,003 sf Storage= 6,634 cf

Peak Elev= 328.64' @ 12.02 hrs Surf.Area= 18,512 sf Storage= 24,466 cf (17,832 cf above start)

Plug-Flow detention time= 525.6 min calculated for 1.354 af (90% of inflow)

Center-of-Mass det. time= 414.5 min (1,204.4 - 789.9)

Volume	Invert	Avail.	Storage	Storage Description	on				
#1	323.83'		6,634 cf	2.25' Stone Storage (Irregular)Listed below (Recalc)					
			•	16,585 cf Overall		,			
#2	326.75'	3	3,290 cf	Surface Storage	Surface Storage (Irregular)Listed below (Recalc)				
		3	9,924 cf	Total Available Sto	orage				
Elevation	ı Su	rf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>			
323.83	3	6,757	545.0	0	0	6,757			
326.08	3	8,003	573.0	16,585	16,585	9,548			
	_								
Elevation		rf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>			
326.75		8,380	568.0	0	0	8,380			
327.00		8,664	571.0	2,130	2,130	8,687			
328.00		9,820	584.0	9,236	11,366	10,014			
329.00		10,914	602.0	10,362	21,729	11,813			
330.00)	12,221	612.0	11,561	33,290	12,954			
	. .:								
	Routing	Inv		et Devices					
#1	Primary	326.4		" Round 18" Outl					
				1.0' CMP, square					
						0.0155 '/' Cc= 0.900			
"0						Flow Area= 1.77 sf			
	Device 1	326.4				d to weir flow at low head			
#3	Device 1	328.0			, , ,) Orifice X 2.00 C= 0.60	JU		
#1	Cacandani	220 (ted to weir flow at lo					
#4 Secondary 3		328.0	∪o ∠U.U	20.0' long x 10.0' breadth Stone Spillway					

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Printed 5/5/2022

Page 5

Primary OutFlow Max=2.82 cfs @ 12.02 hrs HW=328.64' (Free Discharge)

-1=18" Outlet Pipe (Passes 2.82 cfs of 10.23 cfs potential flow)

2=1.6" Orifice (Orifice Controls 0.10 cfs @ 7.06 fps)

-3=Two 12"(W)x6"(H) Orifice (Orifice Controls 2.72 cfs @ 2.72 fps)

Secondary OutFlow Max=24.12 cfs @ 12.02 hrs HW=328.64' (Free Discharge) 4=Stone Spillway (Weir Controls 24.12 cfs @ 2.06 fps)

Summary for Pond 13P: (2) 10'x6' Filterra Units (FTIBC1006)

Inflow Area = 0.460 ac, 0.00% Impervious, Inflow Depth = 2.64" for 10 year event

Inflow = 2.31 cfs @ 11.92 hrs, Volume= 0.101 af

Outflow = 2.30 cfs @ 11.92 hrs, Volume= 0.101 af, Atten= 1%, Lag= 0.1 min

Primary = 2.30 cfs @ 11.92 hrs, Volume= 0.101 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs / 2

Peak Elev= 329.19' @ 11.92 hrs Surf.Area= 120 sf Storage= 118 cf

Plug-Flow detention time= 1.1 min calculated for 0.101 af (100% of inflow)

Center-of-Mass det. time= 0.7 min (784.2 - 783.5)

Volume	Invert	Avail.Sto	rage Storage Description
#1	328.21'	13	32 cf 6.00'W x 10.00'L x 1.10'H Vault x 2
Device	Routing	Invert	Outlet Devices
#1	Device 3	328.21'	140.000 in/hr Filtration over Surface area from 328.20' - 328.22'
			Excluded Surface area = 0 sf
#2	Device 3	328.96'	10.0" Horiz. 10" Overflow Pipe X 2.00 C= 0.600
			Limited to weir flow at low heads
#3	Primary	325.71'	• • • • • • • • • • • • • • • • • • •
			Inlet / Outlet Invert= 325.71' / 324.98' S= 0.0135 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=2.29 cfs @ 11.92 hrs HW=329.19' (Free Discharge)

-3=10" PVC Pipe (Passes 2.29 cfs of 5.11 cfs potential flow)

1=Filtration (Exfiltration Controls 0.39 cfs)

-2=10" Overflow Pipe (Weir Controls 1.90 cfs @ 1.57 fps)

Summary for Pond 14P: Pipe Storage

[81] Warning: Exceeded Pond 13P by 0.69' @ 14.57 hrs

Inflow Area = 0.460 ac, 0.00% Impervious, Inflow Depth = 2.64" for 10 year event

Inflow = 2.30 cfs @ 11.92 hrs, Volume= 0.101 af

Outflow = 0.05 cfs @ 14.57 hrs, Volume= 0.101 af, Atten= 98%, Lag= 158.8 min

Primary = 0.05 cfs @ 14.57 hrs, Volume= 0.101 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Printed 5/5/2022

Page 6

Peak Elev= 328.90' @ 14.57 hrs Surf. Area = 0.012 ac Storage = 0.064 af

Plug-Flow detention time= 660.2 min calculated for 0.101 af (100% of inflow)

Center-of-Mass det. time= 660.2 min (1,444.3 - 784.2)

Volume	Invert	Avail.Storage	Storage Description
#1	325.25'	0.066 af	48.0" Round 48" Pipe L= 230.0'
Device	Routing	Invert Οι	utlet Devices
#1	Device 3	325.25' 1. 0	0" Vert. 1" Orifice C= 0.600 Limited to weir flow at low heads
#2	Device 3	328.95' 5. 0	0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Primary	325.25' 15	5.0" Round 15" Outlet Pipe
		L=	= 50.0' CPP, square edge headwall, Ke= 0.500
		Inl	let / Outlet Invert= 325.25' / 324.98' S= 0.0054 '/' Cc= 0.900
		n=	= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.05 cfs @ 14.57 hrs HW=328.90' (Free Discharge)

-3=15" Outlet Pipe (Passes 0.05 cfs of 9.86 cfs potential flow)

-1=1" Orifice (Orifice Controls 0.05 cfs @ 9.15 fps)

-2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 15F: Forebay #2

Inflow Area = 0.140 ac, 0.00% Impervious, Inflow Depth = 2.09" for 10 year event

Inflow 0.61 cfs @ 11.91 hrs, Volume= 0.024 af

Outflow = 0.60 cfs @ 11.92 hrs, Volume= 0.024 af, Atten= 2%, Lag= 0.4 min

Primary = 0.60 cfs @ 11.92 hrs, Volume= 0.024 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Starting Elev= 328.50' Surf.Area= 278 sf Storage= 302 cf

Peak Elev= 328.59' @ 11.92 hrs Surf.Area= 297 sf Storage= 327 cf (25 cf above start)

Plug-Flow detention time= 151.3 min calculated for 0.017 af (72% of inflow)

Center-of-Mass det. time= 1.1 min (809.4 - 808.3)

Volume	Inve	ert Avail	.Storage	Storage Description					
#1	326.5	50'	470 cf	Forebay Storage	e (Irregular)Listed	below (Recalc)			
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
326.	50	43	46.0	0	0	43			
327.0	00	93	53.0	33	33	103			
328.0	00	210	65.0	148	181	231			
328.	50	278	71.0	122	302	304			
329.0	00	395	87.0	167	470	509			
Device	Routing	lnv	ert Outle	et Devices					
#1	Primary	328.	50' 10.0	long x 5.0 brea	dth Stone Spillwa	ay			

328.50' 10.0' long x 5.0' breadth Stone Spillway Primary

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50

Printed 5/5/2022 Page 7

Coef. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65 2.65 2.67 2.66 2.68 2.70 2.74 2.79 2.88

Primary OutFlow Max=0.59 cfs @ 11.92 hrs HW=328.59' (Free Discharge) 1=Stone Spillway (Weir Controls 0.59 cfs @ 0.69 fps)

Summary for Pond 15P: Bioretention Basin

[81] Warning: Exceeded Pond 15F by 0.69' @ 14.06 hrs

Inflow Area = 0.140 ac, 0.00% Impervious, Inflow Depth = 2.09" for 10 year event

Inflow = 0.60 cfs @ 11.92 hrs, Volume= 0.024 af

Outflow = 0.02 cfs @ 14.01 hrs, Volume= 0.024 af, Atten= 97%, Lag= 125.8 min

Primary = 0.02 cfs @ 14.01 hrs, Volume= 0.024 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 329.20' @ 14.01 hrs Surf.Area= 976 sf Storage= 651 cf

Plug-Flow detention time= 1,091.6 min calculated for 0.024 af (100% of inflow)

Center-of-Mass det. time= 1,091.6 min (1,901.0 - 809.4)

Volume	Inve	rt Avail.	Storage	Storage Description				
#1	328.0	0'	978 cf	Surface Ponding	(Irregular)Listed b	pelow (Recalc)		
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
328.0	00	180	72.0	0	0	180		
329.0	00	844	160.0	471	471	1,809		
329.5	50	1,195	183.0	507	978	2,442		
Device	Routing	Inv	ert Outle	et Devices				
#1	Device 4	328.	00' 0.50	0.500 in/hr Filtration over Surface area from 327.99' - 328.01'				
			_,,,,,	uded Surface area	• • •			
#2	Device 4	328.				to weir flow at low h	neads	
#3	Device 4	329.		O" Horiz. 6" Cast-iron dome inlet grate C= 0.600				
				ted to weir flow at lo				
#4	Primary	324.		" Round Pipe Out		0.500		
				0.0' CPP, square				
			Inlet	/ Outlet Invert= 324	4.75' / 324.50' S=	0.0063 '/' Cc= 0.9	100	

n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.02 cfs @ 14.01 hrs HW=329.20' (Free Discharge)
4=Pipe Outlet (Passes 0.02 cfs of 7.30 cfs potential flow)

1=Filtration (Exfiltration Controls 0.00 cfs)

-2=1" Orifice (Orifice Controls 0.01 cfs @ 2.44 fps)

-3=6" Cast-iron dome inlet grate (Controls 0.00 cfs)

Printed 5/5/2022

Page 8

Summary for Link 11L: S/N 001

Inflow Area = 7.490 ac, 0.00% Impervious, Inflow Depth = 2.59" for 10 year event

Inflow = 27.79 cfs @ 12.01 hrs, Volume= 1.618 af

Primary = 27.79 cfs @ 12.01 hrs, Volume= 1.618 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Summary for Link 12L: S/N 002

Inflow Area = 0.460 ac, 0.00% Impervious, Inflow Depth = 2.64" for 10 year event

Inflow = 0.05 cfs @ 14.57 hrs, Volume= 0.101 af

Primary = 0.05 cfs @ 14.57 hrs, Volume= 0.101 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Summary for Link 13L: S/N 003

Inflow Area = 0.140 ac, 0.00% Impervious, Inflow Depth = 2.09" for 10 year event

Inflow = 0.02 cfs @ 14.01 hrs, Volume= 0.024 af

Primary = 0.02 cfs @ 14.01 hrs, Volume= 0.024 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Prepared by VHB
HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022

Page 1

Time span=0.00-120.00 hrs, dt=0.01 hrs, 12001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment16S: DA-3 Runoff Area=0.460 ac 0.00% Impervious Runoff Depth=2.01"

Flow Length=131' Slope=0.0200'/' Tc=3.6 min CN=86 Runoff=1.77 cfs 0.077 af

Subcatchment17S: DA-4 Runoff Area=0.140 ac 0.00% Impervious Runoff Depth=1.42"

Flow Length=64' Slope=0.0500 '/' Tc=1.7 min CN=78 Runoff=0.42 cfs 0.017 af

Total Runoff Area = 0.600 ac Runoff Volume = 0.094 af Average Runoff Depth = 1.87" 100.00% Pervious = 0.600 ac 0.00% Impervious = 0.000 ac

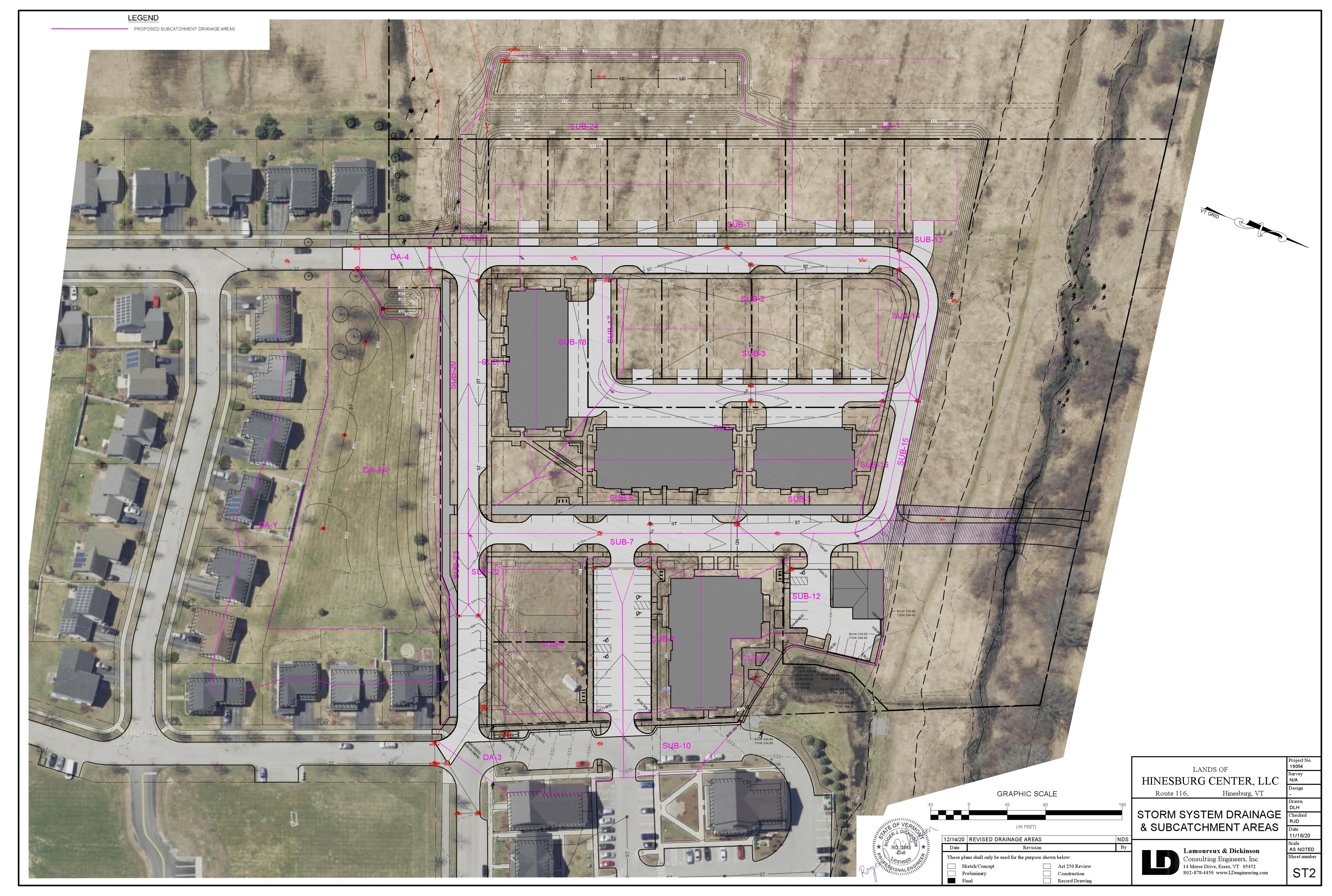
Printed 5/5/2022 Page 2

Summary for Subcatchment 16S: DA-3

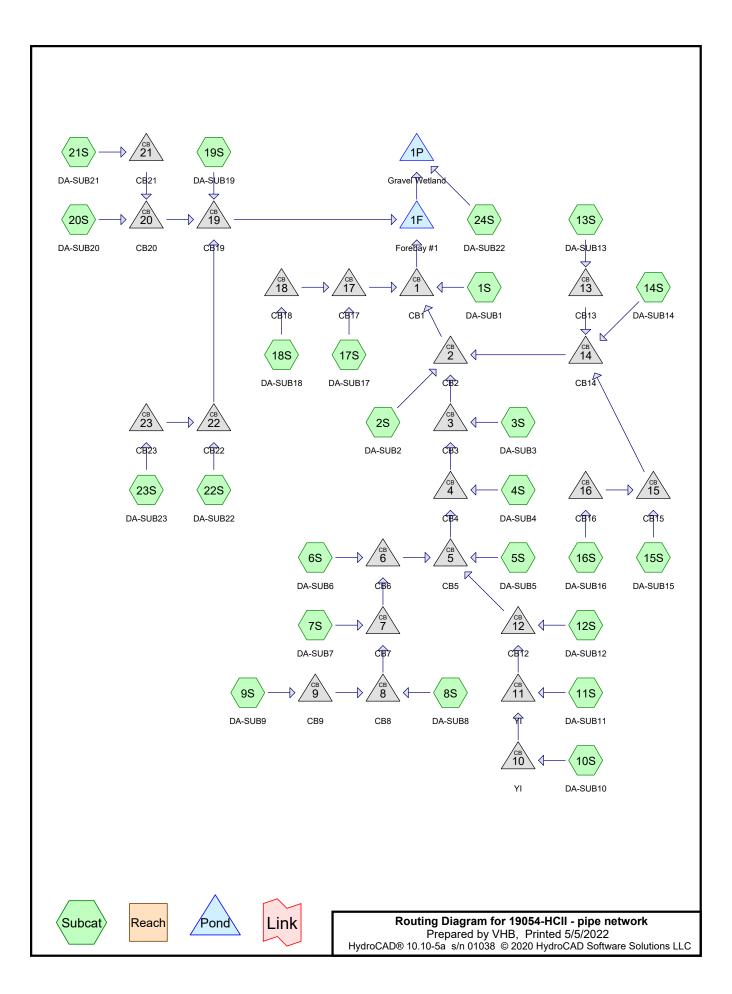
Runoff = 1.77 cfs @ 11.94 hrs, Volume= 0.077 af, Depth= 2.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.40"

	Area	(ac) (CN D	escript	ion		
*	<mark>0</mark> .	460	86 N	<mark>lodified</mark>	CN		
	0.	460	86 1	00.00%	Perv	ious Area	
	Tc	Length	Slo	pe Ve	locity	Capacity	Description
	(min)	(feet)	(ft/	ft) (fl	/sec)	(cfs)	
	3.6	131	0.02	00	0.60		Lag/CN Method, LAG


Summary for Subcatchment 17S: DA-4

Runoff = 0.42 cfs @ 11.92 hrs, Volume= 0.017 af, Depth= 1.42"


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.40"

	Area	(ac) C	CN Des	cription		
*	0.	.140	78 Mod	lified CN		
	0.	.140	78 100	.00% Pervi	ous Area	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.7	64	0.0500	0.64		Lag/CN Method. LAG

APPENDIX F STORM SYSTEM DRAINAGE HCII - SUBCATCHMENT AREAS

APPENDIX G STORM SYSTEM MODELLING (HCII - Qp100)

Prepared by VHB
HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022

Page 2

Time span=0.00-120.00 hrs, dt=0.01 hrs, 12001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

readiffeding by eter-ind. The	ans method - I one routing by otol-ind method
Subcatchment1S: DA-SUB1	Runoff Area=0.590 ac 67.80% Impervious Runoff Depth=4.24" Tc=3.0 min CN=WQ Runoff=4.28 cfs 0.208 af
Subcatchment2S: DA-SUB2	Runoff Area=0.500 ac 68.00% Impervious Runoff Depth=4.24" Tc=3.0 min CN=WQ Runoff=3.63 cfs 0.177 af
Subcatchment3S: DA-SUB3	Runoff Area=0.430 ac 69.77% Impervious Runoff Depth=4.27" Tc=3.0 min CN=WQ Runoff=3.14 cfs 0.153 af
Subcatchment4S: DA-SUB4	Runoff Area=0.510 ac 82.35% Impervious Runoff Depth=4.51" Tc=3.0 min CN=WQ Runoff=3.86 cfs 0.192 af
Subcatchment5S: DA-SUB5	Runoff Area=0.210 ac 76.19% Impervious Runoff Depth=4.40" Tc=3.0 min CN=WQ Runoff=1.56 cfs 0.077 af
Subcatchment6S: DA-SUB6	Runoff Area=0.410 ac 73.17% Impervious Runoff Depth=4.34" Tc=3.0 min CN=WQ Runoff=3.02 cfs 0.148 af
Subcatchment7S: DA-SUB7	Runoff Area=0.290 ac 68.97% Impervious Runoff Depth=4.26" Tc=3.0 min CN=WQ Runoff=2.11 cfs 0.103 af
Subcatchment8S: DA-SUB8	Runoff Area=0.280 ac 85.71% Impervious Runoff Depth=4.57" Tc=3.0 min CN=WQ Runoff=2.14 cfs 0.107 af
Subcatchment9S: DA-SUB9	Runoff Area=0.430 ac 90.70% Impervious Runoff Depth=4.67" Tc=3.0 min CN=WQ Runoff=3.33 cfs 0.167 af
Subcatchment10S: DA-SUB10	Runoff Area=0.180 ac 72.22% Impervious Runoff Depth=4.17" Tc=3.0 min CN=WQ Runoff=1.27 cfs 0.063 af
Subcatchment11S: DA-SUB11	Runoff Area=0.050 ac 40.00% Impervious Runoff Depth=3.71" Tc=3.0 min CN=WQ Runoff=0.33 cfs 0.015 af
Subcatchment12S: DA-SUB12	Runoff Area=0.450 ac 88.89% Impervious Runoff Depth=4.63" Tc=3.0 min CN=WQ Runoff=3.47 cfs 0.174 af
Subcatchment13S: DA-SUB13	Runoff Area=0.120 ac 50.00% Impervious Runoff Depth=3.90" Tc=3.0 min CN=WQ Runoff=0.82 cfs 0.039 af
Subcatchment14S: DA-SUB14	Runoff Area=0.110 ac 36.36% Impervious Runoff Depth=3.65" Tc=3.0 min CN=WQ Runoff=0.72 cfs 0.033 af
Subcatchment15S: DA-SUB15	Runoff Area=0.040 ac 100.00% Impervious Runoff Depth=4.84" Tc=3.0 min CN=98 Runoff=0.32 cfs 0.016 af
Subcatchment16S: DA-SUB16	Runoff Area=0.100 ac 60.00% Impervious Runoff Depth=4.09" Tc=3.0 min CN=WQ Runoff=0.71 cfs 0.034 af

19054-HCII - pipe network	Type II 24-hr	100 year Rainfall=5.08"
Prepared by VHB		Printed 5/5/2022
HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Soluti	ions LLC	Page 3

Subcatchment17S: DA-SUB17	Runoff Area=0.050 ac 40.00% Impervious Runoff Depth=3.71" Tc=3.0 min CN=WQ Runoff=0.33 cfs 0.015 af
Subcatchment18S: DA-SUB18	Runoff Area=0.320 ac 84.38% Impervious Runoff Depth=4.55" Tc=3.0 min CN=WQ Runoff=2.43 cfs 0.121 af
Subcatchment19S: DA-SUB19	Runoff Area=0.390 ac 69.23% Impervious Runoff Depth=4.26" Tc=3.0 min CN=WQ Runoff=2.84 cfs 0.139 af
Subcatchment20S: DA-SUB20	Runoff Area=0.210 ac 66.67% Impervious Runoff Depth=4.22" Tc=3.0 min CN=WQ Runoff=1.52 cfs 0.074 af
Subcatchment21S: DA-SUB21	Runoff Area=0.100 ac 70.00% Impervious Runoff Depth=4.28" Tc=3.0 min CN=WQ Runoff=0.73 cfs 0.036 af
Subcatchment22S: DA-SUB22	Runoff Area=0.040 ac 75.00% Impervious Runoff Depth=4.37" Tc=3.0 min CN=WQ Runoff=0.30 cfs 0.015 af
Subcatchment23S: DA-SUB23	Runoff Area=0.050 ac 80.00% Impervious Runoff Depth=4.47" Tc=3.0 min CN=WQ Runoff=0.38 cfs 0.019 af
Subcatchment24S: DA-SUB22	Runoff Area=0.120 ac 91.67% Impervious Runoff Depth=4.69" Tc=3.0 min CN=WQ Runoff=0.93 cfs 0.047 af
Pond 1: CB1 30.0" Round 0	Peak Elev=332.40' Inflow=37.46 cfs 1.843 af Culvert n=0.013 L=125.0' S=0.0040 '/' Outflow=37.46 cfs 1.843 af
Pond 1F: Forebay#1	Peak Elev=328.86' Storage=6,185 cf Inflow=43.22 cfs 2.125 af Outflow=41.85 cfs 2.125 af
Pond 1P: Gravel Wetland Primary=3.49 cfs 0.	Peak Elev=328.81' Storage=26,272 cf Inflow=42.75 cfs 2.171 af 602 af Secondary=35.45 cfs 1.570 af Outflow=38.94 cfs 2.171 af
Pond 2: CB2 30.0" Round	Peak Elev=331.61' Inflow=30.42 cfs 1.498 af Culvert n=0.013 L=30.0' S=0.0040 '/' Outflow=30.42 cfs 1.498 af
Pond 3: CB3 24.0" Round 0	Peak Elev=333.05' Inflow=24.22 cfs 1.199 af Culvert n=0.013 L=126.0' S=0.0040 '/' Outflow=24.22 cfs 1.199 af
Pond 4: CB4 24.0" Round	Peak Elev=331.96' Inflow=21.08 cfs 1.046 af Culvert n=0.013 L=16.0' S=0.0044 '/' Outflow=21.08 cfs 1.046 af
Pond 5: CB5 24.0" Round 0	Peak Elev=332.34' Inflow=17.23 cfs 0.854 af Culvert n=0.013 L=129.0' S=0.0040 '/' Outflow=17.23 cfs 0.854 af
Pond 6: CB6 18.0" Round	Peak Elev=332.73' Inflow=10.59 cfs 0.525 af Culvert n=0.013 L=91.0' S=0.0040 '/' Outflow=10.59 cfs 0.525 af
Pond 7: CB7 18.0" Roun	Peak Elev=331.81' Inflow=7.58 cfs 0.377 af d Culvert n=0.013 L=20.0' S=0.0040 '/' Outflow=7.58 cfs 0.377 af

Type II 24-hr 100 year Rainfall=5.08" Printed 5/5/2022

19054-nCii - pipe netw		
Prepared by VHB	Printed 5/5/20	
Hydrocade 10.10-5a s/11010	38 © 2020 HydroCAD Software Solutions LLC Page	<u>e 4</u>
Pond 8: CB8	Peak Elev=331.90' Inflow=5.47 cfs 0.274	af
1 0114 0. 020	15.0" Round Culvert n=0.013 L=26.0' S=0.0038'/ Outflow=5.47 cfs 0.274	
Pond 9: CB9	Peak Elev=332.08' Inflow=3.33 cfs 0.167	af
	12.0" Round Culvert n=0.013 L=58.0' S=0.0040 '/' Outflow=3.33 cfs 0.167	af
Pond 10: YI	Peak Elev=331.81' Inflow=1.27 cfs 0.063	
	8.0" Round Culvert n=0.013 L=49.0' S=0.0051 '/' Outflow=1.27 cfs 0.063	at
Pond 11: YI	Peak Elev=331.13' Inflow=1.61 cfs 0.078	af
Folia II. II	12.0" Round Culvert n=0.013 L=119.0' S=0.0040 '/' Outflow=1.61 cfs 0.078	
	12.0 Reality Galvert II 6.010 E 110.0 C 6.0010 7 Callow 1.01010 0.010	u.
Pond 12: CB12	Peak Elev=331.57' Inflow=5.07 cfs 0.252	af
	15.0" Round Culvert n=0.013 L=74.0' S=0.0041 '/' Outflow=5.07 cfs 0.252	af
Pond 13: CB13	Peak Elev=329.51' Inflow=0.82 cfs 0.039	
	15.0" Round Culvert n=0.013 L=20.0' S=0.0040 '/' Outflow=0.82 cfs 0.039	at
Pond 14: CB14	Peak Elev=329.73' Inflow=2.58 cfs 0.123	af
Poliu 14. CB14	18.0" Round Culvert n=0.013 L=155.0' S=0.0041 '/' Outflow=2.58 cfs 0.123	
	10.0 Round Galvert II 0.010 E 100.0 G 0.0041 / Gallow 2.00 00 0.120	ui.
Pond 15: CB15	Peak Elev=330.04' Inflow=1.03 cfs 0.050) af
	15.0" Round Culvert n=0.013 L=138.0' S=0.0041 '/' Outflow=1.03 cfs 0.050	af
Pond 16: CB16	Peak Elev=330.15' Inflow=0.71 cfs 0.034	
	15.0" Round Culvert n=0.013 L=36.0' S=0.0042 '/' Outflow=0.71 cfs 0.034	at
Pond 17: CB17	Peak Elev=329.59' Inflow=2.77 cfs 0.137	' af
1 011d 17: 0D17	15.0" Round Culvert n=0.013 L=127.0' S=0.0041 '/' Outflow=2.77 cfs 0.137	
Pond 18: CB18	Peak Elev=329.65' Inflow=2.43 cfs 0.121	af
	15.0" Round Culvert n=0.013 L=16.0' S=0.0038'/' Outflow=2.43 cfs 0.121	af
	D El 200 (0) E 70 (0.004	
Pond 19: CB19	Peak Elev=330.12' Inflow=5.76 cfs 0.281 18.0" Round Culvert n=0.013 L=160.0' S=0.0041 '/' Outflow=5.76 cfs 0.281	
	18.0 Round Culvert n=0.013 L=160.0 S=0.0041 / Outliow=5.76 cis 0.281	aı
Pond 20: CB20	Peak Elev=329.83' Inflow=2.25 cfs 0.109) af
	15.0" Round Culvert n=0.013 L=52.0' S=0.0040 '/' Outflow=2.25 cfs 0.109	
Pond 21: CB21	Peak Elev=329.55' Inflow=0.73 cfs 0.036	
	15.0" Round Culvert n=0.013 L=22.0' S=0.0041'/' Outflow=0.73 cfs 0.036	af
D = 12 d 201 OD22	De-1- El	F
Pond 22: CB22	Peak Elev=330.57' Inflow=0.67 cfs 0.033 15.0" Round Culvert n=0.013 L=350.0' S=0.0040 '/' Outflow=0.67 cfs 0.033	
	13.0 Round Cuivert 11-0.013 L-330.0 3-0.0040 / Outilow-0.07 CIS 0.033	aı
Pond 23: CB23	Peak Elev=330.60' Inflow=0.38 cfs 0.019) af

Total Runoff Area = 5.980 ac Runoff Volume = 2.171 af Average Runoff Depth = 4.36" 25.59% Pervious = 1.530 ac 74.41% Impervious = 4.450 ac

15.0" Round Culvert $\,$ n=0.013 L=21.0' S=0.0043'/' Outflow=0.38 cfs 0.019 af

Printed 5/5/2022

Page 5

Summary for Subcatchment 1S: DA-SUB1

Runoff = 4.28 cfs @ 11.93 hrs, Volume= 0.208 af, Depth= 4.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

	Area	(ac)	CN	Desc	cription						
*	0.	400	98	98 Impervious							
	0.	190	80	>759	√ Grass co	over, Good	I, HSG D				
	0.590 Weighted Average										
	0.	190	80	32.2	0% Pervio	us Area					
	0.	400	98	67.8	67.80% Impervious Area						
	Тс	Leng	ath	Slope	Velocity	Capacity	Description				
	(min)	(fe	•	(ft/ft)	(ft/sec)	(cfs)	'				
	3.0						Direct Entry, Direct				

Summary for Subcatchment 2S: DA-SUB2

Runoff = 3.63 cfs @ 11.93 hrs, Volume= 0.177 af, Depth= 4.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

	Area	(ac)	CN	Desc	cription						
*	0.	340	98	Impe	mpervious						
	0.	.160	80	>759	% Grass co	over, Good	, HSG D				
0.500 Weighted Average						age					
	0.160 80 32.00% Pervious Area					us Area					
	0.	.340	98	68.0	68.00% Impervious Area						
	_					• "	—				
	Tc Length		gth	Slope	Slope Velocity Capacity Description		Description				
	(min) (feet) (ft/ft) (ft/sec) (cfs)			(ft/sec)	(cfs)						
	3.0						Direct Entry, Direct				

Summary for Subcatchment 3S: DA-SUB3

Runoff = 3.14 cfs @ 11.93 hrs, Volume= 0.153 af, Depth= 4.27"

	Area (ac)	CN	Description						
*	0.300	98	mpervious						
	0.130	80	>75% Grass cover, Good, HSG D						
	0.430		Weighted Average						
	0.130	80	30.23% Pervious Area						
	0.300	98	69.77% Impervious Area						

Prepared by VHB

Printed 5/5/2022

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Page 6

Tc	Length		,	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.0					Direct Entry, Direct

Summary for Subcatchment 4S: DA-SUB4

Runoff = 3.86 cfs @ 11.93 hrs, Volume=

0.192 af, Depth= 4.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

	Area	(ac)	CN	Desc	cription		
*	0.	420	98	Impe	rvious		
	0.	090	80	>75%	√ Grass co	over, Good	, HSG D
	0.	510		Weig	hted Aver	age	
0.090 80 17.65% Pervious Area							
	0.420 98 82.3			82.3	5% Imperv	ious Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	3.0						Direct Entry, Direct

Summary for Subcatchment 5S: DA-SUB5

Runoff = 1.56 cfs @ 11.93 hrs, Volume=

0.077 af, Depth= 4.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

	Area	(ac)	CN	Desc	cription			
*	0.	160	98	Impe	ervious			
	0.	050	80	>759	% Grass co	over, Good	I, HSG D	
	0.:	210		Weig	hted Aver	age		
	0.	050	80	23.8	1% Pervio	us Area		
	0.	160	98	76.1	9% Imper	ious Area		
_	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	3.0						Direct Entry, Direct	

Summary for Subcatchment 6S: DA-SUB6

Runoff = 3.02 cfs @ 11.93 hrs, Volume= 0.148 af, Depth= 4.34"

Prepared by VHB

Printed 5/5/2022

Page 7

	Area	(ac)	CN	Desc	cription						
*	0.	0.300 98 Impervious									
_	0.	0.110 80 >75% Grass cover, Good, HSG D									
	0.	410		Weig	hted Aver	age					
	0.	110	80	26.8	26.83% Pervious Area						
	0.	300	98	73.17% Impervious Area							
	Tc	Leng	th	Slope	Velocity	Capacity	Description				
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)					
	3.0						Direct Entry	Direct			

3.0 Direct Entry, Direct

Summary for Subcatchment 7S: DA-SUB7

Runoff = 2.11 cfs @ 11.93 hrs, Volume= 0.103 af, Depth= 4.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

	Area	(ac)	CN	Desc	ription				
*	0.	0.200 98 Impervious							
	0.	090	80	>75%	√ Grass co	over, Good	I, HSG D		
	0.	290		Weig	hted Aver	age			
	0.090 80 31.03% Pervious Area					us Area			
	0.	200	98	68.9	7% Imperv	ious Area			
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	3.0						Direct Entry, Direct		

Summary for Subcatchment 8S: DA-SUB8

Runoff = 2.14 cfs @ 11.93 hrs, Volume= 0.107 af, Depth= 4.57"

_	Area	(ac)	CN	Desc	cription					
*	0.	240	98	Impe	ervious					
	0.	040	80	>759	% Grass co	over, Good	, HSG D			
	0.	280		Weig	hted Aver	age				
	0.	040	80	14.2	9% Pervio	us Area				
	0.	240	98	85.7	85.71% Impervious Area					
	Tc Length			Slope	Velocity	Capacity	Description			
(min) (feet) (ft/ft) (ft/sec) (cfs)						(cfs)				
	3.0						Direct Entry, Direct			

Printed 5/5/2022

Page 8

Summary for Subcatchment 9S: DA-SUB9

Runoff = 3.33 cfs @ 11.93 hrs, Volume= 0.167 af, Depth= 4.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

	Area	(ac)	CN	Desc	cription				
*	0.	390	98	Impe	ervious				
	0.	040	80	>759	% Grass co	over, Good	, HSG D		
	0.	430		Weig	ghted Aver	age			
	0.040 80 9.30% Pervious Area								
	0.	390	98	90.7	90.70% Impervious Area				
	Tc Length		Slope	Velocity	Capacity	Description			
	9			(ft/ft)	(ft/sec)	(cfs)			
3.0							Direct Entry, Direct		

Summary for Subcatchment 10S: DA-SUB10

Runoff = 1.27 cfs @ 11.93 hrs, Volume= 0.063 af, Depth= 4.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

	Area	(ac)	CN	Desc	cription						
*	0.	130 98 Impervious									
	0.	050	74	>75%	√ Grass co	over, Good	, HSG C				
	0.	180		Weig	hted Aver	age					
	0.	050	74	27.7	8% Pervio	us Area					
	0.	130	98	72.22% Impervious Area							
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	3.0			·			Direct Entry, Direct				

Summary for Subcatchment 11S: DA-SUB11

Runoff = 0.33 cfs @ 11.94 hrs, Volume= 0.015 af, Depth= 3.71"

	Area (ac)	CN	Description						
*	0.020	98	mpervious						
	0.030	80	>75% Grass cover, Good, HSG D						
	0.050		Weighted Average						
	0.030	80	60.00% Pervious Area						
	0.020	98	40.00% Impervious Area						

Prepared by VHB

Printed 5/5/2022

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Page 9

Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.0					Direct Entry, Direct

Summary for Subcatchment 12S: DA-SUB12

Runoff = 3.47 cfs @ 11.93 hrs, Volume= 0.174 af, Depth= 4.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

	Area	(ac)	CN	Desc	cription						
*	0.	.400 98 Impervious									
	0.	050	80	>759	% Grass co	over, Good	, HSG D				
	0.	450		Weig	hted Aver	age					
	0.050 80 11.11% Pervious Area										
	0.	400	98 88.89% Impervious Ar		ious Area						
	Tc Lenç (min) (fe		•	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
3.0							Direct Entry, Direct				

Summary for Subcatchment 13S: DA-SUB13

Runoff = 0.82 cfs @ 11.94 hrs, Volume= 0.039 af, Depth= 3.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

_	Area	(ac)	CN	Desc	cription					
*	0.	0.060 98 Impervious								
_	0.	.060	80	>759	% Grass co	over, Good	, HSG D			
	0.	120		Weig	hted Aver	age				
	0.	060	80	50.0	0% Pervio	us Area				
	0.	060 98		3 50.00% Impervi		∕ious Area				
	Tc (min)	Leng	,	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
_	3.0	(10.	<u> </u>	(Idit)	(1000)	(0.0)	Direct Entry, Direct			

Summary for Subcatchment 14S: DA-SUB14

Runoff = 0.72 cfs @ 11.94 hrs, Volume= 0.033 af, Depth= 3.65"

Prepared by VHB

Printed 5/5/2022

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Page 10

_	Area	(ac)	CN	Desc	cription					
*	* 0.040 98 Impervious									
	0.070 80 >75% Grass cover, Good, HSG D									
	0.	110		Weig	hted Aver	age				
	0.070			63.64% Pervious Area						
	0.	040	98	98 36.36% I		ious Area				
	_									
	Tc	Leng	ıth	Slope	Velocity	Capacity	Description			
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)				
_	3 0						Direct Entry Di	roct	<u> </u>	

3.0

Direct Entry, Direct

Summary for Subcatchment 15S: DA-SUB15

Runoff = 0.32 cfs @ 11.93 hrs, Volume=

0.016 af, Depth= 4.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

_	Area	(ac)	CN	Desc	cription			
*	0.	040	98					
	0.040 98 100.00% Impervious Area							
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	3.0	·	•				Direct Entry, Direct	

Summary for Subcatchment 16S: DA-SUB16

Runoff = 0.71 cfs @ 11.93 hrs, Volume= 0.034 af, Depth= 4.09"

	Area	(ac)	CN	Desc	cription						
*	0.	.060 98 Impervious									
	0.	040	80	>759	% Grass co	over, Good	, HSG D				
	0.	100		Weig	ghted Aver	age					
	0.	040	80	40.0	0% Pervio	us Area					
	0.060			60.00% Impervious Area							
	Тс	Leng	ıth	Slope	Velocity	Capacity	Description				
(min) (feet) (ft/ft) (ft/sec) (cfs)					(ft/sec)	(cfs)					
	3.0						Direct Entry, Direct				

Printed 5/5/2022

Page 11

Summary for Subcatchment 17S: DA-SUB17

Runoff = 0.33 cfs @ 11.94 hrs, Volume= 0.015 af, Depth= 3.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

_	Area	(ac)	CN	Desc	cription							
*	0.	0.020 98 Impervious										
_	0.	030	80	>759	% Grass co	over, Good	, HSG D					
	0.	050		Weig	hted Aver	age						
	0.	030	80	60.0	0% Pervio	us Area						
	0.	020	98	40.0	40.00% Impervious Area							
	То	Long	u+b	Clana	Valacity	Canacity	Description					
	Tc	Leng	,	Slope	Velocity	Capacity	Description					
_	(min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)						
3.0							Direct Entry, Direct					

Summary for Subcatchment 18S: DA-SUB18

Runoff = 2.43 cfs @ 11.93 hrs, Volume= 0.121 af, Depth= 4.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

	Area	(ac)	CN	Desc	cription							
*	0.	270	98	Impe	mpervious							
	0.	050	80	>759	% Grass co	over, Good	, HSG D					
	0.	320		Weig	ghted Aver	age						
	0.	050	80	15.6	3% Pervio	us Area						
	0.270 98			84.3	84.38% Impervious Area							
	_					• "	—					
	Tc Length			Slope	Velocity	Capacity	Description					
	(min) (feet) (ft/ft) (ft/sec) (cfs)				(ft/sec)	(cfs)						
	3.0						Direct Entry, Direct					

Summary for Subcatchment 19S: DA-SUB19

Runoff = 2.84 cfs @ 11.93 hrs, Volume= 0.139 af, Depth= 4.26"

a. . .

	Area (ac)	CN	Description
*	0.270	98	Impervious
	0.120	80	>75% Grass cover, Good, HSG D
	0.390		Weighted Average
	0.120	80	30.77% Pervious Area
	0.270	98	69.23% Impervious Area

Prepared by VHB

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022 Page 12

Тс			,	Capacity	Description
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.0					Direct Entry, Direct

Summary for Subcatchment 20S: DA-SUB20

Runoff = 1.52 cfs @ 11.93 hrs, Volume= 0.074 af, Depth= 4.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

	Area	(ac)	CN	Desc	cription				
*	0.	140	98	Impe	ervious				
	0.	070 80 >75% Grass cover, Good, HSG D							
	0.210 Weighted Average								
	0.	070	80	33.3	3% Pervio	us Area			
	0.	140	98	66.6	7% Imper	ious Area			
	Тс	Leng	,	Slope	Velocity	Capacity	Description		
_	(min) (feet) (ft/ft) (ft/sec) (cfs)								
	3.0						Direct Entry, Direct		

Summary for Subcatchment 21S: DA-SUB21

Runoff = 0.73 cfs @ 11.93 hrs, Volume= 0.036 af, Depth= 4.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

_	Area	(ac)	CN	Desc	cription						
*	0.	070	98	Impervious							
	0.	030	80	>759	% Grass co	over, Good	, HSG D				
	0.100 Weighted Average										
	0.030 80 30.00% Pervious Area										
	0.	070	98	70.0	0% Imper	∕ious Area					
	To	Long	ıth	Slope	Volocity	Canacity	Description				
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)											
_	(min)	(166	2 ()	(ft/ft)	(ft/sec)	(cfs)					
	3.0						Direct Entry, Direct				

Summary for Subcatchment 22S: DA-SUB22

Runoff = 0.30 cfs @ 11.93 hrs, Volume= 0.015 af, Depth= 4.37"

Prepared by VHB

Printed 5/5/2022

Page 13

	Area	(ac)	CN	Desc	cription						
*	0.	030	98	Impe	ervious						
	0.	010	80 >75% Grass cover, Good, HSG D								
	0.040 Weighted Average										
	0.010 80 25.00% Pervious Area										
	0.	030	98	75.0	0% Imperv	ious Area					
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	3.0						Direct Entry, Direct				

•,

Summary for Subcatchment 23S: DA-SUB23

Runoff = 0.38 cfs @ 11.93 hrs, Volume= 0.019 af, Depth= 4.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

_	Area	(ac)	CN	Desc	cription							
*	0.	040	98 Impervious									
	0.	010	10 80 >75% Grass cover, Good, HSG D									
	0.	.050 Weighted Average										
	0.	0.010 80 20.00% Pervious Area										
	0.	040	98	80.0	0% Imperv	ious Area						
	_		41.	01	V . I !4	0	Documents the second					
	Tc Length Slope Velocity Capacity Description											
	(min)	(feet) (ft/ft) (ft/sec) (cfs)										
	3.0						Direct Entry, Direct					

Summary for Subcatchment 24S: DA-SUB22

Runoff = 0.93 cfs @ 11.93 hrs, Volume= 0.047 af, Depth= 4.69"

	Area	(ac)	CN	Desc	cription				
*	0.	110	98	Impe	ervious				
	0.	010	80	>759	% Grass co	over, Good	I, HSG D		
	0.	0.120 Weighted Average							
	0.010 80 8.33% Pervious Area								
	0.110 98			98 91.67% Impervious Area					
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
_	3.0	(100	,,,,	(10/10)	(11/300)	(013)	Direct Entry, Direct		
	5.0						Direct Litty, Direct		

Prepared by VHB

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Page 14

Printed 5/5/2022

Summary for Pond 1: CB1

[81] Warning: Exceeded Pond 2 by 0.79' @ 11.93 hrs [81] Warning: Exceeded Pond 17 by 2.80' @ 11.93 hrs

Inflow Area = 5.070 ac, 74.75% Impervious, Inflow Depth = 4.36" for 100 year event

Inflow = 37.46 cfs @ 11.93 hrs, Volume= 1.843 af

Outflow = 37.46 cfs @ 11.93 hrs, Volume= 1.843 af, Atten= 0%, Lag= 0.0 min

Primary = 37.46 cfs @ 11.93 hrs, Volume= 1.843 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 332.40' @ 11.93 hrs

Flood Elev= 332.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	328.00'	30.0" Round Culvert
			L= 125.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 328.00' / 327.50' S= 0.0040 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=37.34 cfs @ 11.93 hrs HW=332.39' (Free Discharge) 1=Culvert (Barrel Controls 37.34 cfs @ 7.61 fps)

Summary for Pond 1F: Forebay #1

[81] Warning: Exceeded Pond 1 by 0.01' @ 24.16 hrs

[79] Warning: Submerged Pond 19 Primary device # 1 INLET by 0.20'

Inflow Area = 5.860 ac, 74.06% Impervious, Inflow Depth = 4.35" for 100 year event

Inflow = 43.22 cfs @ 11.93 hrs, Volume= 2.125 af

Outflow = 41.85 cfs @ 11.95 hrs, Volume= 2.125 af, Atten= 3%, Lag= 0.9 min

Primary = 41.85 cfs @ 11.95 hrs, Volume= 2.125 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Starting Elev= 328.00' Surf.Area= 2,628 sf Storage= 3,057 cf

Peak Elev= 328.86' @ 11.95 hrs Surf.Area= 4,777 sf Storage= 6,185 cf (3,127 cf above start)

Plug-Flow detention time= 41.3 min calculated for 2.054 af (97% of inflow)

Center-of-Mass det. time= 2.5 min (756.5 - 754.0)

Volume	Invert	Ava	il.Storage	Storage Description	on	
#1	326.00'		13,093 cf	Forebay Storage	(Irregular)Listed	below (Recalc)
Elevation	Surf.A	Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(s	q-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
326.00		513	516.0	0	0	513
327.00	1,	,557	529.0	988	988	1,714
328.00	2,	,628	541.0	2,069	3,057	2,867
329.00	5,	,198	591.0	3,841	6,898	7,407
330.00	7.	.249	696.0	6.195	13.093	18.180

Prepared by VHB
HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022

<u>Page 15</u>

Device	Routing	Invert	Outlet Devices
#1	Primary	328.00'	20.0' long x 18.0' breadth Stone Spillway
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=41.79 cfs @ 11.95 hrs HW=328.86' (Free Discharge) 1=Stone Spillway (Weir Controls 41.79 cfs @ 2.44 fps)

Summary for Pond 1P: Gravel Wetland

[42] Hint: Gap in defined storage above volume #1 at 326.08'

[81] Warning: Exceeded Pond 1F by 0.23' @ 12.06 hrs

Inflow Area = 5.980 ac, 74.41% Impervious, Inflow Depth = 4.36" for 100 year event

Inflow = 42.75 cfs @ 11.95 hrs, Volume= 2.171 af

Outflow = 38.94 cfs @ 11.98 hrs, Volume= 2.171 af, Atten= 9%, Lag= 1.7 min

Primary = 3.49 cfs @ 11.98 hrs, Volume= 0.602 af Secondary = 35.45 cfs @ 11.98 hrs, Volume= 1.570 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Starting Elev= 326.42' Surf.Area= 8,003 sf Storage= 6,634 cf

Peak Elev= 328.81' @ 11.98 hrs Surf.Area= 18,701 sf Storage= 26,272 cf (19,638 cf above start)

Plug-Flow detention time= 386.2 min calculated for 2.019 af (93% of inflow)

Center-of-Mass det. time= 310.4 min (1,066.6 - 756.2)

Volume	Inver	t Ava	il.Storage	Storage Description	on		
#1	323.83	3'	6,634 cf	2.25' Stone Stora	age (Irregular)List	ted below (Recalc)	
				16,585 cf Overall	x 40.0% Voids	, ,	
#2	326.75	5'	33,290 cf	Surface Storage	(Irregular)Listed	below (Recalc)	
			39,924 cf	Total Available St	orage		
Elevation	S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
323.83		6,757	545.0	0	0	6,757	
326.08		8,003	573.0	16,585	16,585	9,548	
Elevation	S	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet)		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
326.75		8,380	568.0	0	0	8,380	
327.00		8,664	571.0	2,130	2,130	8,687	
328.00		9,820	584.0	9,236	11,366	10,014	
329.00		10,914	602.0	10,362	21,729	11,813	
330.00		12,221	612.0	11,561	33,290	12,954	
Device F	Routing	In	vert Outl	et Devices			
#1 F	Primary	326		" Round 18" Out	•		
				1.0' CMP, square			
						= 0.0155 '/' Cc= 0.90	
						r, Flow Area= 1.77 s	
#2 [Device 1	326	3.42' 1.6"	Vert. 1.6" Orifice	C= 0.600 Limite	ed to weir flow at low	heads

Prepared by VHB Printed 5/5/2022

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Page 16

12.0" W x 6.0" H Vert. Two 12"(W)x6"(H) Orifice X 2.00 C= 0.600 #3 Device 1 328.05'

Limited to weir flow at low heads

#4 Secondary 328.05' 20.0' long x 10.0' breadth Stone Spillway

> Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=3.49 cfs @ 11.98 hrs HW=328.81' (Free Discharge)

-1=18" Outlet Pipe (Passes 3.49 cfs of 10.88 cfs potential flow)

-2=1.6" Orifice (Orifice Controls 0.10 cfs @ 7.33 fps)

-3=Two 12"(W)x6"(H) Orifice (Orifice Controls 3.39 cfs @ 3.39 fps)

Secondary OutFlow Max=35.37 cfs @ 11.98 hrs HW=328.81' (Free Discharge) 4=Stone Spillway (Weir Controls 35.37 cfs @ 2.34 fps)

Summary for Pond 2: CB2

[79] Warning: Submerged Pond 3 Primary device # 1 INLET by 2.88'

[81] Warning: Exceeded Pond 14 by 1.87' @ 11.93 hrs

4.110 ac, 75.43% Impervious, Inflow Depth = 4.37" for 100 year event Inflow Area =

Inflow = 30.42 cfs @ 11.93 hrs, Volume= 1.498 af

Outflow = 30.42 cfs @ 11.93 hrs, Volume= 1.498 af, Atten= 0%, Lag= 0.0 min

30.42 cfs @ 11.93 hrs, Volume= Primary 1.498 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 331.61' @ 11.93 hrs

Flood Elev= 332.60'

Invert Outlet Devices Device Routing #1 Primary 328.17' 30.0" Round Culvert L= 30.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 328.17' / 328.05' S= 0.0040 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Primary OutFlow Max=30.32 cfs @ 11.93 hrs HW=331.60' (Free Discharge) **1=Culvert** (Barrel Controls 30.32 cfs @ 6.18 fps)

Summary for Pond 3: CB3

[58] Hint: Peaked 0.25' above defined flood level

[81] Warning: Exceeded Pond 4 by 1.09' @ 11.93 hrs

Inflow Area = 3.240 ac, 79.01% Impervious, Inflow Depth = 4.44" for 100 year event

24.22 cfs @ 11.93 hrs, Volume= Inflow 1.199 af

Outflow 24.22 cfs @ 11.93 hrs, Volume= 1.199 af, Atten= 0%, Lag= 0.0 min =

Primary 24.22 cfs @ 11.93 hrs, Volume= 1.199 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 333.05' @ 11.93 hrs

Flood Elev= 332.80' WSE = 333.05', 3" ABOVE GRATE ELEVATION ON ROAD D

Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC Printed 5/5/2022

Page 17

Device Routing Invert Outlet Devices

#1 Primary 328.72' 24.0" Round Culvert

L= 126.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 328.72' / 328.22' S= 0.0040 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=24.14 cfs @ 11.93 hrs HW=333.03' (Free Discharge) 1=Culvert (Barrel Controls 24.14 cfs @ 7.68 fps)

Summary for Pond 4: CB4

[79] Warning: Submerged Pond 5 Primary device # 1 INLET by 2.54'

Inflow Area = 2.810 ac, 80.43% Impervious, Inflow Depth = 4.47" for 100 year event

Inflow = 21.08 cfs @ 11.93 hrs, Volume= 1.046 af

Outflow = 21.08 cfs @ 11.93 hrs, Volume= 1.046 af, Atten= 0%, Lag= 0.0 min

Primary = 21.08 cfs @ 11.93 hrs, Volume= 1.046 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 331.96' @ 11.93 hrs

Flood Elev= 332.80'

Device Routing Invert Outlet Devices

#1 Primary

328.84'

24.0" Round Culvert

L= 16.0' CPP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 328.84' / 328.77' S= 0.0044 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=21.01 cfs @ 11.93 hrs HW=331.95' (Free Discharge) 1=Culvert (Barrel Controls 21.01 cfs @ 6.69 fps)

Summary for Pond 5: CB5

[79] Warning: Submerged Pond 6 Primary device # 1 INLET by 2.51'

[81] Warning: Exceeded Pond 12 by 0.77' @ 11.93 hrs

Inflow Area = 2.300 ac, 80.00% Impervious, Inflow Depth = 4.46" for 100 year event

Inflow = 17.23 cfs @ 11.93 hrs, Volume= 0.854 af

Outflow = 17.23 cfs @ 11.93 hrs, Volume= 0.854 af, Atten= 0%, Lag= 0.0 min

Primary = 17.23 cfs @ 11.93 hrs, Volume= 0.854 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 332.34' @ 11.93 hrs

Flood Elev= 334.05'

Device	Routing	Invert	Outlet Devices
#1	Primary	329.41'	24.0" Round Culvert
			L= 129.0' CPP, square edge headwall, Ke= 0.500

Inlet / Outlet Invert= 329.41' / 328.89' S= 0.0040 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Prepared by VHB

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022

Page 18

Primary OutFlow Max=17.17 cfs @ 11.93 hrs HW=332.33' (Free Discharge) 1=Culvert (Barrel Controls 17.17 cfs @ 5.47 fps)

Summary for Pond 6: CB6

[81] Warning: Exceeded Pond 7 by 0.91' @ 11.93 hrs

Inflow Area = 1.410 ac, 80.14% Impervious, Inflow Depth = 4.47" for 100 year event

Inflow = 10.59 cfs @ 11.93 hrs, Volume= 0.525 af

Outflow = 10.59 cfs @ 11.93 hrs, Volume= 0.525 af, Atten= 0%, Lag= 0.0 min

Primary = 10.59 cfs @ 11.93 hrs, Volume= 0.525 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 332.73' @ 11.93 hrs

Flood Elev= 333.50'

Device Routing Invert Outlet Devices

#1 Primary

329.82'

#2 Primary

18.0" Round Culvert

L= 91.0' CPP, square edge headwall, Ke= 0.500

Inlet / Outlet Invert= 329.82' / 329.46' S= 0.0040 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=10.56 cfs @ 11.93 hrs HW=332.71' (Free Discharge) 1=Culvert (Barrel Controls 10.56 cfs @ 5.98 fps)

Summary for Pond 7: CB7

[79] Warning: Submerged Pond 8 Primary device # 1 INLET by 1.71'

Inflow Area = 1.000 ac, 83.00% Impervious, Inflow Depth = 4.52" for 100 year event

Inflow = 7.58 cfs @ 11.93 hrs, Volume= 0.377 af

Outflow = 7.58 cfs @ 11.93 hrs, Volume= 0.377 af, Atten= 0%, Lag= 0.0 min

Primary = 7.58 cfs @ 11.93 hrs, Volume= 0.377 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 331.81' @ 11.93 hrs

Flood Elev= 333.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	329.95'	18.0" Round Culvert
	_		L= 20.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 329.95' / 329.87' S= 0.0040 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=7.55 cfs @ 11.93 hrs HW=331.81' (Free Discharge)
—1=Culvert (Barrel Controls 7.55 cfs @ 4.42 fps)

Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC Printed 5/5/2022

Page 19

Summary for Pond 8: CB8

[79] Warning: Submerged Pond 9 Primary device # 1 INLET by 1.52'

Inflow Area = 0.710 ac, 88.73% Impervious, Inflow Depth = 4.63" for 100 year event

5.47 cfs @ 11.93 hrs, Volume= Inflow 0.274 af

Outflow 5.47 cfs @ 11.93 hrs, Volume= 0.274 af, Atten= 0%, Lag= 0.0 min =

Primary = 5.47 cfs @ 11.93 hrs, Volume= 0.274 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 331.90' @ 11.93 hrs

Flood Elev= 333.40'

Device	Routing	Invert	Outlet Devices
#1	Primary	330.10'	15.0" Round Culvert L= 26.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 330.10' / 330.00' S= 0.0038 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=5.45 cfs @ 11.93 hrs HW=331.89' (Free Discharge) **1=Culvert** (Barrel Controls 5.45 cfs @ 4.44 fps)

Summary for Pond 9: CB9

Inflow Area = 0.430 ac, 90.70% Impervious, Inflow Depth = 4.67" for 100 year event

3.33 cfs @ 11.93 hrs, Volume= Inflow = 0.167 af

3.33 cfs @ 11.93 hrs, Volume= Outflow = 0.167 af, Atten= 0%, Lag= 0.0 min

3.33 cfs @ 11.93 hrs, Volume= 0.167 af Primary

Routing by Stor-Ind method. Time Span= 0.00-120.00 hrs. dt= 0.01 hrs.

Peak Elev= 332.08' @ 11.93 hrs

Flood Elev= 333.40'

Device	Routing	Invert	Outlet Devices
#1	Primary	330.38'	12.0" Round Culvert
	-		L= 58.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 330.38' / 330.15' S= 0.0040 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior. Flow Area= 0.79 sf

Primary OutFlow Max=3.32 cfs @ 11.93 hrs HW=332.07' (Free Discharge) **1=Culvert** (Barrel Controls 3.32 cfs @ 4.22 fps)

Summary for Pond 10: YI

0.180 ac, 72.22% Impervious, Inflow Depth = 4.17" for 100 year event Inflow Area = Inflow 1.27 cfs @ 11.93 hrs, Volume= 0.063 af

1.27 cfs @ 11.93 hrs, Volume= Outflow 0.063 af, Atten= 0%, Lag= 0.0 min =

Primary 1.27 cfs @ 11.93 hrs, Volume= 0.063 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Prepared by VHB Printed 5/5/2022

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Page 20

Peak Elev= 331.81' @ 11.93 hrs

Flood Elev= 332.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	330.54'	8.0" Round Culvert
			L= 49.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 330.54' / 330.29' S= 0.0051 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=1.27 cfs @ 11.93 hrs HW=331.81' (Free Discharge)
—1=Culvert (Barrel Controls 1.27 cfs @ 3.64 fps)

Summary for Pond 11: YI

[79] Warning: Submerged Pond 10 Primary device # 1 INLET by 0.59'

Inflow Area = 0.230 ac, 65.22% Impervious, Inflow Depth = 4.07" for 100 year event

Inflow = 1.61 cfs @ 11.93 hrs, Volume= 0.078 af

Outflow = 1.61 cfs @ 11.93 hrs, Volume= 0.078 af, Atten= 0%, Lag= 0.0 min

Primary = 1.61 cfs @ 11.93 hrs, Volume= 0.078 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 331.13' @ 11.93 hrs

Flood Elev= 333.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	330.29'	12.0" Round Culvert
	-		L= 119.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 330.29' / 329.81' S= 0.0040 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.60 cfs @ 11.93 hrs HW=331.13' (Free Discharge)
—1=Culvert (Barrel Controls 1.60 cfs @ 3.09 fps)

Summary for Pond 12: CB12

[81] Warning: Exceeded Pond 11 by 0.43' @ 11.93 hrs

Inflow Area = 0.680 ac, 80.88% Impervious, Inflow Depth = 4.44" for 100 year event

Inflow = 5.07 cfs @ 11.93 hrs, Volume= 0.252 af

Outflow = 5.07 cfs @ 11.93 hrs, Volume= 0.252 af, Atten= 0%, Lag= 0.0 min

Primary = 5.07 cfs @ 11.93 hrs, Volume= 0.252 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 331.57' @ 11.93 hrs

Flood Elev= 334.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	329.76'	15.0" Round Culvert
			L= 74.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert- 320 76' / 320 46' S- 0 0041 '/' Cc- 0 000

Prepared by VHB

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022 Page 21

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=5.06 cfs @ 11.93 hrs HW=331.56' (Free Discharge) 1=Culvert (Barrel Controls 5.06 cfs @ 4.12 fps)

Summary for Pond 13: CB13

Inflow Area = 0.120 ac, 50.00% Impervious, Inflow Depth = 3.90" for 100 year event

Inflow = 0.82 cfs @ 11.94 hrs, Volume= 0.039 af

Outflow = 0.82 cfs @ 11.94 hrs, Volume= 0.039 af, Atten= 0%, Lag= 0.0 min

Primary = 0.82 cfs @ 11.94 hrs, Volume= 0.039 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 329.51' @ 11.94 hrs

Flood Elev= 334.40'

Device Routing Invert Outlet Devices

#1 Primary 328.98' 15.0" Round Culvert

L= 20.0' CPP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 328.98' / 328.90' S= 0.0040'/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.82 cfs @ 11.94 hrs HW=329.51' (Free Discharge) 1=Culvert (Barrel Controls 0.82 cfs @ 2.47 fps)

Summary for Pond 14: CB14

[81] Warning: Exceeded Pond 13 by 0.22' @ 11.93 hrs

[79] Warning: Submerged Pond 15 Primary device # 1 INLET by 0.26'

Inflow Area = 0.370 ac, 54.05% Impervious, Inflow Depth = 3.98" for 100 year event

Inflow = 2.58 cfs @ 11.94 hrs, Volume= 0.123 af

Outflow = 2.58 cfs @ 11.94 hrs, Volume= 0.123 af, Atten= 0%, Lag= 0.0 min

Primary = 2.58 cfs @ 11.94 hrs, Volume= 0.123 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 329.73' @ 11.94 hrs

Flood Elev= 333.40'

Device	Routing	Invert	Outlet Devices
#1	Primary	328.85'	18.0" Round Culvert
	-		L= 155.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 328.85' / 328.22' S= 0.0041 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior. Flow Area= 1.77 sf

Primary OutFlow Max=2.56 cfs @ 11.94 hrs HW=329.73' (Free Discharge) 1=Culvert (Barrel Controls 2.56 cfs @ 3.42 fps)

Prepared by VHB

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022

Page 22

Summary for Pond 15: CB15

[79] Warning: Submerged Pond 16 Primary device # 1 INLET by 0.37'

Inflow Area = 0.140 ac, 71.43% Impervious, Inflow Depth = 4.31" for 100 year event

Inflow = 1.03 cfs @ 11.93 hrs, Volume= 0.050 af

Outflow = 1.03 cfs @ 11.93 hrs, Volume= 0.050 af, Atten= 0%, Lag= 0.0 min

Primary = 1.03 cfs @ 11.93 hrs, Volume= 0.050 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 330.04' @ 11.93 hrs

Flood Elev= 334.15'

Device	Routing	Invert	Outlet Devices
	Primary	329.47'	15.0" Round Culvert L= 138.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 329.47' / 328.90' S= 0.0041 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.02 cfs @ 11.93 hrs HW=330.04' (Free Discharge)
1=Culvert (Barrel Controls 1.02 cfs @ 2.74 fps)

Summary for Pond 16: CB16

Inflow Area = 0.100 ac, 60.00% Impervious, Inflow Depth = 4.09" for 100 year event

Inflow = 0.71 cfs @ 11.93 hrs, Volume= 0.034 af

Outflow = 0.71 cfs @ 11.93 hrs, Volume= 0.034 af, Atten= 0%, Lag= 0.0 min

Primary = 0.71 cfs @ 11.93 hrs, Volume= 0.034 af

Routing by Stor-Ind method. Time Span= 0.00-120.00 hrs. dt= 0.01 hrs.

Peak Elev= 330.15' @ 11.93 hrs

Flood Elev= 333.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	329.67'	15.0" Round Culvert L= 36.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 329.67' / 329.52' S= 0.0042 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.71 cfs @ 11.93 hrs HW=330.15' (Free Discharge) 1=Culvert (Barrel Controls 0.71 cfs @ 2.42 fps)

Summary for Pond 17: CB17

[79] Warning: Submerged Pond 18 Primary device # 1 INLET by 0.91'

Inflow Area	a =	0.370 ac, 7	78.38% Impervious,	Inflow Depth = 4.44"	for 100 year event
Inflow	=	2.77 cfs @	11.93 hrs, Volume	e= 0.137 af	·

Outflow = 2.77 cfs @ 11.93 hrs, Volume= 0.137 af, Atten= 0%, Lag= 0.0 min

Primary = 2.77 cfs @ 11.93 hrs, Volume= 0.137 af

Prepared by VHB

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Page 23

Printed 5/5/2022

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 329.59' @ 11.93 hrs

Flood Elev= 333.20'

Device Routing Invert Outlet Devices

#1 Primary

328.57'

15.0" Round Culvert

L= 127.0' CPP, square edge headwall, Ke= 0.500
Inlet / Outlet Invert= 328.57' / 328.05' S= 0.0041 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.76 cfs @ 11.93 hrs HW=329.59' (Free Discharge) 1=Culvert (Barrel Controls 2.76 cfs @ 3.51 fps)

Summary for Pond 18: CB18

Inflow Area = 0.320 ac, 84.38% Impervious, Inflow Depth = 4.55" for 100 year event

Inflow = 2.43 cfs @ 11.93 hrs, Volume= 0.121 af

Outflow = 2.43 cfs @ 11.93 hrs, Volume= 0.121 af, Atten= 0%, Lag= 0.0 min

Primary = 2.43 cfs @ 11.93 hrs, Volume= 0.121 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 329.65' @ 11.93 hrs

Flood Elev= 333.60'

Device Routing Invert Outlet Devices

#1 Primary

328.68'

#2 15.0" Round Culvert

L= 16.0' CPP, square edge headwall, Ke= 0.500

Inlet / Outlet Invert= 328.68' / 328.62' S= 0.0038 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.43 cfs @ 11.93 hrs HW=329.65' (Free Discharge) 1=Culvert (Barrel Controls 2.43 cfs @ 3.26 fps)

Summary for Pond 19: CB19

[81] Warning: Exceeded Pond 20 by 0.29' @ 11.93 hrs

[79] Warning: Submerged Pond 22 Primary device # 1 INLET by 0.01'

Inflow Area = 0.790 ac, 69.62% Impervious, Inflow Depth = 4.27" for 100 year event

Inflow = 5.76 cfs @ 11.93 hrs, Volume= 0.281 af

Outflow = 5.76 cfs @ 11.93 hrs, Volume= 0.281 af, Atten= 0%, Lag= 0.0 min

Primary = 5.76 cfs @ 11.93 hrs, Volume= 0.281 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 330.12' @ 11.93 hrs

Flood Elev= 332.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	328.66'	18.0" Round Culvert
			L= 160.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 328.66' / 328.00' S= 0.0041 '/' Cc= 0.900

Prepared by VHB

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022 Page 24

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=5.74 cfs @ 11.93 hrs HW=330.12' (Free Discharge)
1=Culvert (Barrel Controls 5.74 cfs @ 4.17 fps)

Summary for Pond 20: CB20

[81] Warning: Exceeded Pond 21 by 0.28' @ 11.93 hrs

Inflow Area = 0.310 ac, 67.74% Impervious, Inflow Depth = 4.24" for 100 year event

Inflow = 2.25 cfs @ 11.93 hrs, Volume= 0.109 af

Outflow = 2.25 cfs @ 11.93 hrs, Volume= 0.109 af, Atten= 0%, Lag= 0.0 min

Primary = 2.25 cfs @ 11.93 hrs, Volume= 0.109 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 329.83' @ 11.93 hrs

Flood Elev= 331.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	328.92'	15.0" Round Culvert
			L= 52.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 328.92' / 328.71' S= 0.0040 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.24 cfs @ 11.93 hrs HW=329.83' (Free Discharge) 1=Culvert (Barrel Controls 2.24 cfs @ 3.27 fps)

Summary for Pond 21: CB21

Inflow Area = 0.100 ac, 70.00% Impervious, Inflow Depth = 4.28" for 100 year event

Inflow = 0.73 cfs @ 11.93 hrs, Volume= 0.036 af

Outflow = 0.73 cfs @ 11.93 hrs, Volume= 0.036 af, Atten= 0%, Lag= 0.0 min

Primary = 0.73 cfs @ 11.93 hrs, Volume= 0.036 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 329.55' @ 11.93 hrs

Flood Elev= 331.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	329.06'	15.0" Round Culvert
			L= 22.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 329.06' / 328.97' S= 0.0041 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.73 cfs @ 11.93 hrs HW=329.55' (Free Discharge) 1=Culvert (Barrel Controls 0.73 cfs @ 2.41 fps)

Prepared by VHB

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Page 25

Printed 5/5/2022

Summary for Pond 22: CB22

[79] Warning: Submerged Pond 23 Primary device # 1 INLET by 0.32'

Inflow Area = 0.090 ac, 77.78% Impervious, Inflow Depth = 4.43" for 100 year event

Inflow = 0.67 cfs @ 11.93 hrs, Volume= 0.033 af

Outflow = 0.67 cfs @ 11.93 hrs, Volume= 0.033 af, Atten= 0%, Lag= 0.0 min

Primary = 0.67 cfs @ 11.93 hrs, Volume= 0.033 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Peak Elev= 330.57' @ 11.93 hrs

Flood Elev= 333.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	330.11'	15.0" Round Culvert L= 350.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 330.11' / 328.71' S= 0.0040'/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.67 cfs @ 11.93 hrs HW=330.57' (Free Discharge) 1=Culvert (Barrel Controls 0.67 cfs @ 2.44 fps)

Summary for Pond 23: CB23

Inflow Area = 0.050 ac, 80.00% Impervious, Inflow Depth = 4.47" for 100 year event

Inflow = 0.38 cfs @ 11.93 hrs, Volume= 0.019 af

Outflow = 0.38 cfs @ 11.93 hrs, Volume= 0.019 af, Atten= 0%, Lag= 0.0 min

Primary = 0.38 cfs @ 11.93 hrs, Volume= 0.019 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs


Peak Elev= 330.60' @ 11.93 hrs

Flood Elev= 333.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	330.25'	15.0" Round Culvert
			L= 21.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 330.25' / 330.16' S= 0.0043 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.37 cfs @ 11.93 hrs HW=330.60' (Free Discharge) 1=Culvert (Barrel Controls 0.37 cfs @ 2.04 fps)

APPENDIX H STORM SYSTEM MODELLING (INTO CREEKSIDE - CPv, Qp10, Qp100)

Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC Printed 5/5/2022

Page 2

Time span=0.00-120.00 hrs, dt=0.01 hrs, 12001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 13S: DA-3 Runoff Area = 0.460 ac 0.00% Impervious Runoff Depth = 1.31"

Flow Length=131' Slope=0.0450 '/' Tc=1.8 min CN=93 Runoff=1.20 cfs 0.050 af

Subcatchment15S: DA-4 Runoff Area=0.140 ac 0.00% Impervious Runoff Depth=0.90"

Flow Length=64' Slope=0.1500 '/' Tc=0.7 min CN=87 Runoff=0.27 cfs 0.010 af

SubcatchmentAA: Lot 30 Runoff Area=1.160 ac 0.00% Impervious Runoff Depth=0.35"

Flow Length=450' Slope=0.0060 '/' Tc=6.5 min CN=74 Runoff=0.61 cfs 0.033 af

SubcatchmentY: Backside of lots 19-29 Runoff Area=0.710 ac 0.00% Impervious Runoff Depth=0.84"

Tc=19.4 min CN=86 Runoff=0.67 cfs 0.050 af

Pond 13P: (2) 10'x6' Filterra Units (FTIBC1006) Peak Elev=329.09' Storage=106 cf Inflow=1.20 cfs 0.050 af

Outflow=1.19 cfs 0.050 af

Pond 14P: Pipe Storage Peak Elev=327.02' Storage=0.029 af Inflow=1.19 cfs 0.050 af

Outflow=0.03 cfs 0.050 af

Pond 15F: Forebay #2 Peak Elev=328.55' Storage=317 cf Inflow=0.27 cfs 0.010 af

Outflow=0.26 cfs 0.010 af

Pond 15P: Bioretention Basin Peak Elev=328.85' Storage=351 cf Inflow=0.26 cfs 0.010 af

Outflow=0.00 cfs 0.010 af

Pond YI: Lot 30 Drainage Improvements Peak Elev=328.52' Storage=1,893 cf Inflow=1.07 cfs 0.083 af

Outflow=0.05 cfs 0.083 af

Total Runoff Area = 2.470 ac Runoff Volume = 0.144 af Average Runoff Depth = 0.70" 100.00% Pervious = 2.470 ac 0.00% Impervious = 0.000 ac

Printed 5/5/2022 Page 3

Summary for Subcatchment 13S: DA-3

Runoff = 1.20 cfs @ 11.92 hrs, Volume= 0.050 af, Depth= 1.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=1.99"

_	Area	(ac) C	N Des	cription		
*	<mark>0</mark> .	460 9	93 Mod	lified CN		
_	0.	460 9	93 100.	00% Pervi	ous Area	
	_		01	\	0 "	
	Tc	Length	Slope	,	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.8	131	0.0450	1.20		Lag/CN Method, LAG

Summary for Subcatchment 15S: DA-4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.27 cfs @ 11.91 hrs, Volume= 0.010 af, Depth= 0.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=1.99"

_	Area	(ac)	CN	Desc	cription		
*	<u>0</u> .	140	87	Mod	ified CN		
	0.	140	87	100.	00% Pervi	ous Area	
	_		_				—
	Tc	Length	า S	lope	Velocity	Capacity	Description
	(min)	(feet) ((ft/ft)	(ft/sec)	(cfs)	
_	0.7	64	1 0.1	1500	1.49		Lag/CN Method, LAG

Summary for Subcatchment AA: Lot 30

Runoff = 0.61 cfs @ 12.00 hrs, Volume= 0.033 af, Depth= 0.35"

Area	a (ac) C	N Des	cription		
	1.160	74 >75°	% Grass c	over, Good	<mark>, HSG C</mark>
	1.160	74 100.	00% Pervi	ous Area	
To (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.5	450	0.0060	1.16		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps

Printed 5/5/2022 Page 4

Summary for Subcatchment Y: Backside of lots 19-29

Runoff = 0.67 cfs @ 12.13 hrs, Volume= 0.050 af, Depth= 0.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 1 year Rainfall=1.99"

	Area	(ac)	CN	Desc	cription		
*	<mark>0</mark> .	710	86				
	0.	710	86	100.	00% Pervi	ous Area	
	Tc (min)	Leng	,	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	19.4	((14,11)	(1111)	(===)	Direct Entry,

Summary for Pond 13P: (2) 10'x6' Filterra Units (FTIBC1006)

Inflow Area =	0.460 ac,	0.00% Impervious, Inflow [Depth = 1.31" for 1 year event
Inflow =	1.20 cfs @	11.92 hrs, Volume=	0.050 af
Outflow =	1.19 cfs @	11.93 hrs, Volume=	0.050 af, Atten= 1%, Lag= 0.2 min
Primary =	1.19 cfs @	11.93 hrs, Volume=	0.050 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 329.09 @ 11.93 hrs Surf.Area= 120 sf Storage= 106 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.7 min (804.0 - 803.3)

Volume	Invert	Avail.Sto	rage Storage Description
#1	328.21'	13	32 cf 6.00'W x 10.00'L x 1.10'H Vault x 2
Device	Routing	Invert	Outlet Devices
#1	Device 3	328.21'	140.000 in/hr Filtration over Surface area from 328.20' - 328.22'
			Excluded Surface area = 0 sf
#2	Device 3	328.96'	10.0" Horiz. 10" Overflow Pipe X 2.00 C= 0.600
			Limited to weir flow at low heads
#3	Primary	325.71'	10.0" Round 10" PVC Pipe L= 54.0' Ke= 0.200
			Inlet / Outlet Invert= 325.71' / 324.98' S= 0.0135 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=1.19 cfs @ 11.93 hrs HW=329.09' (Free Discharge)

3=10" PVC Pipe (Passes 1.19 cfs of 5.03 cfs potential flow)

1=Filtration (Exfiltration Controls 0.39 cfs)

-2=10" Overflow Pipe (Weir Controls 0.80 cfs @ 1.18 fps)

Page 5

Summary for Pond 14P: Pipe Storage

[79] Warning: Submerged Pond 13P Primary device # 3 INLET by 1.31'

Inflow Area = 0.460 ac, 0.00% Impervious, Inflow Depth = 1.31" for 1 year event

Inflow 1.19 cfs @ 11.93 hrs, Volume= 0.050 af

Outflow 0.03 cfs @ 13.77 hrs, Volume= 0.050 af, Atten= 97%, Lag= 110.4 min

Primary = 0.03 cfs @ 13.77 hrs, Volume= 0.050 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 327.02' @ 13.77 hrs Surf.Area= 0.021 ac Storage= 0.029 af

Plug-Flow detention time= 425.2 min calculated for 0.050 af (100% of inflow)

Center-of-Mass det. time= 425.1 min (1,229.1 - 804.0)

Volume	Invert	Avail.Storage	Storage Description
#1	325.25'	0.066 af	48.0" Round 48" Pipe
			L= 230.0'
#2	325.25'	0.001 af	4.00'D x 4.50'H Drainage Manhole
·			

0.068 af Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Device 3	325.25'	1.0" Vert. 1" Orifice C= 0.600 Limited to weir flow at low heads
#2	Device 3	328.95'	5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Primary	325.25'	15.0" Round 15" Outlet Pipe
			L= 50.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 325.25' / 324.98' S= 0.0054 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.03 cfs @ 13.77 hrs HW=327.02' (Free Discharge)

-3=15" Outlet Pipe (Passes 0.03 cfs of 5.35 cfs potential flow)

-1=1" Orifice (Orifice Controls 0.03 cfs @ 6.33 fps)

2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 15F: Forebay #2

Inflow Area = 0.140 ac, 0.00% Impervious, Inflow Depth = 0.90" for 1 year event

0.27 cfs @ 11.91 hrs, Volume= Inflow 0.010 af

0.26 cfs @ 11.92 hrs, Volume= Outflow 0.010 af, Atten= 3%, Lag= 0.6 min

Primary = 0.26 cfs @ 11.92 hrs, Volume= 0.010 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Starting Elev= 328.50' Surf.Area= 278 sf Storage= 302 cf

Peak Elev= 328.55' @ 11.92 hrs Surf.Area= 289 sf Storage= 317 cf (14 cf above start)

Plug-Flow detention time= 353.0 min calculated for 0.004 af (34% of inflow)

Center-of-Mass det. time= 1.2 min (833.7 - 832.6)

Printed 5/5/2022

Page 6

Volume	Inv	ert Avail.	.Storage	Storage Descripti	on		
#1	326.	50'	470 cf	Forebay Storage	(Irregular)Listed	below (Recalc)	
Elevation	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
326.5	50	43	46.0	0	0	43	
327.0	00	93	53.0	33	33	103	
328.0	00	210	65.0	148	181	231	
328.5	50	278	71.0	122	302	304	
329.0	00	395	87.0	167	470	509	
Device	Routing	Inv	ert Outle	et Devices			
#1	Primary	328.	50' 10.0 '	long x 5.0' brea	dth Stone Spillwa	ay	
			Head	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60 1.80	0 2.00
			2.50	3.00 3.50 4.00 4	4.50 5.00 5.50		
			Coef	f. (English) 2.34 2	2.50 2.70 2.68 2.	68 2.66 2.65 2.65	2.65
			2.65	2.67 2.66 2.68 2	2.70 2.74 2.79 2	.88	

Primary OutFlow Max=0.26 cfs @ 11.92 hrs HW=328.55' (Free Discharge) 1=Stone Spillway (Weir Controls 0.26 cfs @ 0.52 fps)

Summary for Pond 15P: Bioretention Basin

[81] Warning: Exceeded Pond 15F by 0.34' @ 24.04 hrs

Inflow Area = 0.140 ac, 0.00% Impervious, Inflow Depth = 0.90" for 1 year event
Inflow = 0.26 cfs @ 11.92 hrs, Volume= 0.010 af
Outflow = 0.00 cfs @ 10.90 hrs, Volume= 0.010 af, Atten= 99%, Lag= 0.0 min
Primary = 0.00 cfs @ 10.90 hrs, Volume= 0.010 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 328.85' @ 24.01 hrs Surf.Area= 709 sf Storage= 351 cf

Plug-Flow detention time= 1,570.3 min calculated for 0.010 af (100% of inflow) Center-of-Mass det. time= 1,570.4 min (2,404.1 - 833.7)

Volume	Invert	Avail.S	Storage	Storage Descripti	on			
#1	328.00'		978 cf	Surface Ponding	g (Irregular) Listed	below (Recalc)		
Elevatio		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
328.0 329.0 329.5	00	180 844 1,195	72.0 160.0 183.0	0 471 507	0 471 978	180 1,809 2,442		
Device	Routing	Inve		et Devices	910	2,442		
#1	Device 4	328.0		0.500 in/hr Filtration over Surface area from 327.99' - 328.01' Excluded Surface area = 0 sf				
#2 #3	Device 4 328.90' 1.0" Vert. 1" Orifice C= 0.600 Limited to weir flow at low 329.25' 6.0" Horiz. 6" Cast-iron dome inlet grate C= 0.600 Limited to weir flow at low heads							

Printed 5/5/2022

Page 7

12.0" Round Pipe Outlet #4 Primary 324.75'

L= 40.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 324.75' / 324.50' S= 0.0063 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 10.90 hrs HW=328.02' (Free Discharge)

4=Pipe Outlet (Passes 0.00 cfs of 6.02 cfs potential flow)

—1=Filtration (Exfiltration Controls 0.00 cfs)

-2=1" Orifice (Controls 0.00 cfs)

-3=6" Cast-iron dome inlet grate (Controls 0.00 cfs)

Summary for Pond YI: Lot 30 Drainage Improvements

1.870 ac, 0.00% Impervious, Inflow Depth = 0.53" for 1 year event Inflow Area =

Inflow 1.07 cfs @ 12.02 hrs, Volume= 0.083 af

0.05 cfs @ 15.77 hrs, Volume= Outflow 0.083 af, Atten= 95%, Lag= 225.2 min

0.05 cfs @ 15.77 hrs, Volume= 0.083 af Primary =

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 328.52' @ 15.77 hrs Surf.Area= 3,924 sf Storage= 1,893 cf

Plug-Flow detention time= 425.4 min calculated for 0.083 af (100% of inflow)

Center-of-Mass det. time= 425.4 min (1,297.5 - 872.1)

Volume	Invert	Avail.Storage	Storage Description
#1	327.50'	4,233 cf	Lawn Area (Irregular)Listed below (Recalc)
#2	324.75'	106 cf	12.0" Round Pipe Storage
			L= 135.0' S= 0.0050 '/'
#3	324.75'	63 cf	4.00'D x 5.00'H Catchbasin

4,402 cf Total Available Storage

Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
327.50	12	24.0	0	0	12
328.00	1,695	288.0	308	308	6,567
329.00	6,707	422.0	3,925	4,233	14,146


Device	Routing	Invert	Outlet Devices
#1	Primary	324.75'	12.0" Round Outlet Pipe
	-		L= 40.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 324.75' / 324.50' S= 0.0063 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	324.75'	1.0" Vert. 1" Orifice C= 0.600 Limited to weir flow at low heads
#3	Device 1	328.55'	4.0' long Top Weir Wall 2 End Contraction(s)

Primary OutFlow Max=0.05 cfs @ 15.77 hrs HW=328.52' (Free Discharge)

-1=Outlet Pipe (Passes 0.05 cfs of 6.60 cfs potential flow)

-2=1" Orifice (Orifice Controls 0.05 cfs @ 9.30 fps)

-3=Top Weir Wall (Controls 0.00 cfs)

Prepared by VHB

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022

Page 2

Time span=0.00-120.00 hrs, dt=0.01 hrs, 12001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment13S: DA-3 Runoff Area=0.460 ac 0.00% Impervious Runoff Depth=2.64"

Flow Length=131' Slope=0.0450 '/' Tc=1.8 min CN=93 Runoff=2.31 cfs 0.101 af

Subcatchment15S: DA-4 Runoff Area=0.140 ac 0.00% Impervious Runoff Depth=2.09"

Flow Length=64' Slope=0.1500 '/' Tc=0.7 min CN=87 Runoff=0.61 cfs 0.024 af

SubcatchmentAA: Lot 30 Runoff Area=1.160 ac 0.00% Impervious Runoff Depth=1.17"

Flow Length=450' Slope=0.0060'/' Tc=6.5 min CN=74 Runoff=2.37 cfs 0.113 af

SubcatchmentY: Backside of lots 19-29 Runoff Area=0.710 ac 0.00% Impervious Runoff Depth=2.01"

Tc=19.4 min CN=86 Runoff=1.61 cfs 0.119 af

Pond 13P: (2) 10'x6' Filterra Units (FTIBC1006) Peak Elev=329.19' Storage=118 cf Inflow=2.31 cfs 0.101 af

Outflow=2.30 cfs 0.101 af

Pond 14P: Pipe Storage Peak Elev=328.83' Storage=0.064 af Inflow=2.30 cfs 0.101 af

Outflow=0.05 cfs 0.101 af

Pond 15F: Forebay #2 Peak Elev=328.59' Storage=327 cf Inflow=0.61 cfs 0.024 af

Outflow=0.60 cfs 0.024 af

Pond 15P: Bioretention Basin Peak Elev=329.20' Storage=651 cf Inflow=0.60 cfs 0.024 af

Outflow=0.02 cfs 0.024 af

Pond YI: Lot 30 Drainage Improvements Peak Elev=328.79' Storage=3,144 cf Inflow=3.46 cfs 0.232 af

Outflow=1.61 cfs 0.232 af

Total Runoff Area = 2.470 ac Runoff Volume = 0.358 af Average Runoff Depth = 1.74" 100.00% Pervious = 2.470 ac 0.00% Impervious = 0.000 ac

Printed 5/5/2022

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Page 3

Summary for Subcatchment 13S: DA-3

Runoff = 2.31 cfs @ 11.92 hrs, Volume= 0.101 af, Depth= 2.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.40"

	Area	(ac) (N Des	cription				
*	0.	460	93 Mod	lified CN				
	0.460 93 100.00% Pervious Area							
	Tc	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	1.8	131	0.0450	1.20		Lag/CN Method, LAG		

Summary for Subcatchment 15S: DA-4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.61 cfs @ 11.91 hrs, Volume= 0.024 af, Depth= 2.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.40"

	Area	(ac) (CN De	scription		
*	<u>0</u> .	140	87 Mo	dified CN		
	0.	140	87 100	0.00% Perv	ious Area	
	-		01			D
	Tc	9		•		Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.7	64	0.1500	1.49		Lag/CN Method, LAG

Summary for Subcatchment AA: Lot 30

Runoff = 2.37 cfs @ 11.98 hrs, Volume= 0.113 af, Depth= 1.17"

Area	(ac) C	N Des	cription					
<u>1.</u>	160	<mark>74 >75</mark>	<mark>% Grass c</mark>	over, Good	, HSG C			
1.	1.160 74 100.00% Pervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.5	450	0.0060	1.16		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps			

Printed 5/5/2022

Page 4

Summary for Subcatchment Y: Backside of lots 19-29

Runoff = 1.61 cfs @ 12.12 hrs, Volume= 0.119 af, Depth= 2.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 10 year Rainfall=3.40"

_	Area	(ac)	CN	Desc	cription				
*	<u>0</u> .	710	86						
	0.710 86 100.00% Pervious Area								
	Тс	Leng	ıth	Slope	Velocity	Canacity	Description		
	(min)	(fee	,	(ft/ft)	(ft/sec)	(cfs)	Безоприон		
	19.4	·					Direct Entry,		

Summary for Pond 13P: (2) 10'x6' Filterra Units (FTIBC1006)

Inflow Area =	0.460 ac,	0.00% Impervious, Inflow D	Depth = 2.64" for 10 year event
Inflow =	2.31 cfs @	11.92 hrs, Volume=	0.101 af
Outflow =	2.30 cfs @	11.92 hrs, Volume=	0.101 af, Atten= 1%, Lag= 0.1 min
Primary =	2.30 cfs @	11.92 hrs, Volume=	0.101 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 329.19 @ 11.92 hrs Surf.Area= 120 sf Storage= 118 cf

Plug-Flow detention time= 1.1 min calculated for 0.101 af (100% of inflow) Center-of-Mass det. time= 0.7 min (784.2 - 783.5)

Volume	Invert	Avail.Stor	rage Storage Description
#1	328.21'	13	32 cf 6.00'W x 10.00'L x 1.10'H Vault x 2
Device	Routing	Invert	Outlet Devices
#1	Device 3	328.21'	140.000 in/hr Filtration over Surface area from 328.20' - 328.22'
			Excluded Surface area = 0 sf
#2	Device 3	328.96'	10.0" Horiz. 10" Overflow Pipe X 2.00 C= 0.600
			Limited to weir flow at low heads
#3	Primary	325.71'	
			Inlet / Outlet Invert= 325.71' / 324.98' S= 0.0135 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=2.29 cfs @ 11.92 hrs HW=329.19' (Free Discharge)

3=10" PVC Pipe (Passes 2.29 cfs of 5.11 cfs potential flow)

1=Filtration (Exfiltration Controls 0.39 cfs)

-2=10" Overflow Pipe (Weir Controls 1.90 cfs @ 1.57 fps)

Page 5

Summary for Pond 14P: Pipe Storage

[81] Warning: Exceeded Pond 13P by 0.62' @ 14.62 hrs

Inflow Area = 0.460 ac, 0.00% Impervious, Inflow Depth = 2.64" for 10 year event

Inflow = 2.30 cfs @ 11.92 hrs, Volume= 0.101 af

Outflow = 0.05 cfs @ 14.62 hrs, Volume= 0.101 af, Atten= 98%, Lag= 161.6 min

Primary = 0.05 cfs @ 14.62 hrs, Volume= 0.101 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 328.83' @ 14.62 hrs Surf.Area= 0.013 ac Storage= 0.064 af

Plug-Flow detention time= 667.1 min calculated for 0.101 af (100% of inflow)

Center-of-Mass det. time= 667.1 min (1,451.3 - 784.2)

Volume	Invert	Avail.Storage	Storage Description
#1	325.25'	0.066 af	48.0" Round 48" Pipe
			L= 230.0'
#2	325.25'	0.001 af	4.00'D x 4.50'H Drainage Manhole
·			

0.068 af Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Device 3	325.25'	1.0" Vert. 1" Orifice C= 0.600 Limited to weir flow at low heads
#2	Device 3	328.95'	5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Primary	325.25'	15.0" Round 15" Outlet Pipe
			L= 50.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 325.25' / 324.98' S= 0.0054 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.05 cfs @ 14.62 hrs HW=328.83' (Free Discharge)

-3=15" Outlet Pipe (Passes 0.05 cfs of 9.73 cfs potential flow)

-1=1" Orifice (Orifice Controls 0.05 cfs @ 9.06 fps)

—2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 15F: Forebay #2

Inflow Area = 0.140 ac, 0.00% Impervious, Inflow Depth = 2.09" for 10 year event

Inflow = 0.61 cfs @ 11.91 hrs, Volume= 0.024 af

Outflow = 0.60 cfs @ 11.92 hrs, Volume= 0.024 af, Atten= 2%, Lag= 0.4 min

Primary = 0.60 cfs @ 11.92 hrs, Volume= 0.024 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Starting Elev= 328.50' Surf.Area= 278 sf Storage= 302 cf

Peak Elev= 328.59' @ 11.92 hrs Surf.Area= 297 sf Storage= 327 cf (25 cf above start)

Plug-Flow detention time= 151.3 min calculated for 0.017 af (72% of inflow)

Center-of-Mass det. time= 1.1 min (809.4 - 808.3)

Printed 5/5/2022

Page 6

Volume	Inv	ert Avail	.Storage	Storage Description	n		
#1	326.	50'	470 cf	Forebay Storage	(Irregular)Listed	below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
326.5	50	43	46.0	Ó	Ó	43	
327.0	00	93	53.0	33	33	103	
328.0	00	210	65.0	148	181	231	
328.5	50	278	71.0	122	302	304	
329.0	00	395	87.0	167	470	509	
Device	Routing	Inv	Invert Outlet Devices				
#1	Primary	328.	50' 10.0'	long x 5.0' bread	Ith Stone Spillwa	ıy	
	·			l (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60 1.80 2	.00
			2.50	3.00 3.50 4.00 4	.50 5.00 5.50		
			Coef	. (English) 2.34 2.	50 2.70 2.68 2.6	88 2.66 2.65 2.65 2.6	5
			2.65	2.67 2.66 2.68 2	.70 2.74 2.79 2.	88	

Primary OutFlow Max=0.59 cfs @ 11.92 hrs HW=328.59' (Free Discharge) 1=Stone Spillway (Weir Controls 0.59 cfs @ 0.69 fps)

Summary for Pond 15P: Bioretention Basin

[81] Warning: Exceeded Pond 15F by 0.69' @ 14.06 hrs

Inflow Area = 0.140 ac, 0.00% Impervious, Inflow Depth = 2.09" for 10 year event
Inflow = 0.60 cfs @ 11.92 hrs, Volume= 0.024 af

Outflow = 0.02 cfs @ 14.01 hrs, Volume= 0.024 af, Atten= 97%, Lag= 125.8 min

Primary = 0.02 cfs @ 14.01 hrs, Volume= 0.024 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 329.20' @ 14.01 hrs Surf.Area= 976 sf Storage= 651 cf

Plug-Flow detention time= 1,091.6 min calculated for 0.024 af (100% of inflow) Center-of-Mass det. time= 1,091.6 min (1,901.0 - 809.4)

Volume	Inver	t Avail.S	Storage	age Storage Description						
#1	328.00	1	978 cf	f Surface Ponding (Irregular)Listed below (Recalc)						
Elevation (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)				
328.0	00	180	72.0	0	0	180				
329.0	00	844	160.0	471	471	1,809				
329.5	50	1,195	183.0	507	978	2,442				
Device Routing Invert			ert Outle	et Devices						
#1	Device 4	328.0	0' 0.50	0.500 in/hr Filtration over Surface area from 327.99' - 328.01'						
			Excl	uded Surface area	a = 0 sf					
#2	Device 4	328.9	0' 1.0"	Vert. 1" Orifice	C= 0.600 Limited	to weir flow at low heads				
#3	Device 4 329.25' 6 .			6.0" Horiz. 6" Cast-iron dome inlet grate C= 0.600 Limited to weir flow at low heads						

Printed 5/5/2022

Page 7

#4 Primary 324.75' **12.0" Round Pipe Outlet**

L= 40.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 324.75' / 324.50' S= 0.0063 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.02 cfs @ 14.01 hrs HW=329.20' (Free Discharge)

4=Pipe Outlet (Passes 0.02 cfs of 7.30 cfs potential flow)

—1=Filtration (Exfiltration Controls 0.00 cfs)

-2=1" Orifice (Orifice Controls 0.01 cfs @ 2.44 fps)

-3=6" Cast-iron dome inlet grate (Controls 0.00 cfs)

Summary for Pond YI: Lot 30 Drainage Improvements

Inflow Area = 1.870 ac, 0.00% Impervious, Inflow Depth = 1.49" for 10 year event

Inflow = 3.46 cfs @ 12.00 hrs, Volume= 0.232 af

Outflow = 1.61 cfs @ 12.23 hrs, Volume= 0.232 af, Atten= 53%, Lag= 14.0 min

Primary = 1.61 cfs @ 12.23 hrs, Volume= 0.232 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs / 2

Peak Elev= 328.79 @ 12.23 hrs Surf.Area= 5,415 sf Storage= 3,144 cf

Plug-Flow detention time= 223.0 min calculated for 0.232 af (100% of inflow)

Center-of-Mass det. time= 223.1 min (1,065.1 - 842.0)

Volume	Invert	Avail.Storage	Storage Description
#1	327.50'	4,233 cf	Lawn Area (Irregular)Listed below (Recalc)
#2	324.75'	106 cf	12.0" Round Pipe Storage
			L= 135.0' S= 0.0050 '/'
#3	324.75'	63 cf	4.00'D x 5.00'H Catchbasin

4,402 cf Total Available Storage

Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
327.50	12	24.0	0	0	12
328.00	1,695	288.0	308	308	6,567
329.00	6,707	422.0	3,925	4,233	14,146


Device	Routing	Invert	Outlet Devices
#1	Primary	324.75'	12.0" Round Outlet Pipe
			L= 40.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 324.75' / 324.50' S= 0.0063 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	324.75'	1.0" Vert. 1" Orifice C= 0.600 Limited to weir flow at low heads
#3	Device 1	328.55'	4.0' long Top Weir Wall 2 End Contraction(s)

Primary OutFlow Max=1.61 cfs @ 12.23 hrs HW=328.79' (Free Discharge)

1=Outlet Pipe (Passes 1.61 cfs of 6.89 cfs potential flow)

2=1" Orifice (Orifice Controls 0.05 cfs @ 9.63 fps)

-3=Top Weir Wall (Weir Controls 1.55 cfs @ 1.61 fps)

Prepared by VHB HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC Printed 5/5/2022

Page 2

Time span=0.00-120.00 hrs, dt=0.01 hrs, 12001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment13S: DA-3 Runoff Area=0.460 ac 0.00% Impervious Runoff Depth=4.28"

Flow Length=131' Slope=0.0450 '/' Tc=1.8 min CN=93 Runoff=3.62 cfs 0.164 af

Subcatchment15S: DA-4 Runoff Area=0.140 ac 0.00% Impervious Runoff Depth=3.64"

Flow Length=64' Slope=0.1500 '/' Tc=0.7 min CN=87 Runoff=1.03 cfs 0.042 af

SubcatchmentAA: Lot 30 Runoff Area=1.160 ac 0.00% Impervious Runoff Depth=2.43"

Flow Length=450' Slope=0.0060 '/' Tc=6.5 min CN=74 Runoff=4.95 cfs 0.235 af

SubcatchmentY: Backside of lots 19-29 Runoff Area=0.710 ac 0.00% Impervious Runoff Depth=3.54"

Tc=19.4 min CN=86 Runoff=2.81 cfs 0.210 af

Pond 13P: (2) 10'x6' Filterra Units (FTIBC1006) Peak Elev=329.36' Storage=132 cf Inflow=3.62 cfs 0.164 af

Outflow=3.71 cfs 0.164 af

Pond 14P: Pipe Storage Peak Elev=329.34' Storage=0.068 af Inflow=3.71 cfs 0.164 af

Outflow=3.92 cfs 0.164 af

Pond 15F: Forebay #2 Peak Elev=328.62' Storage=338 cf Inflow=1.03 cfs 0.042 af

Outflow=1.01 cfs 0.042 af

Pond 15P: Bioretention Basin Peak Elev=329.42' Storage=886 cf Inflow=1.01 cfs 0.042 af

Outflow=0.38 cfs 0.042 af

Pond YI: Lot 30 Drainage Improvements Peak Elev=329.17' Storage=4,394 cf Inflow=6.85 cfs 0.444 af

Outflow=6.22 cfs 0.443 af

Total Runoff Area = 2.470 ac Runoff Volume = 0.651 af Average Runoff Depth = 3.16" 100.00% Pervious = 2.470 ac 0.00% Impervious = 0.000 ac

Printed 5/5/2022

Page 3

Summary for Subcatchment 13S: DA-3

Runoff = 3.62 cfs @ 11.92 hrs, Volume= 0.164 af, Depth= 4.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

_	Area	(ac) C	N Des	cription					
*	<mark>0</mark> .	460 9	93 Mod	lified CN					
_	0.460 93 100.00% Pervious Area								
	_		01	\	0 "				
	Tc	Length	Slope	,	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	1.8	131	0.0450	1.20		Lag/CN Method, LAG			

Summary for Subcatchment 15S: DA-4

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.03 cfs @ 11.91 hrs, Volume= 0.042 af, Depth= 3.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

	Area	(ac) (CN De	scription		
*	<u>0</u> .	140	87 Mo	dified CN		
	0.	140	87 100	0.00% Perv	ious Area	
	-		01			D
	Tc	9		•		Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.7	64	0.1500	1.49		Lag/CN Method, LAG

Summary for Subcatchment AA: Lot 30

Runoff = 4.95 cfs @ 11.98 hrs, Volume= 0.235 af, Depth= 2.43"

Area	(ac) C	N Des	cription						
<u>1.</u>	160 7	⁷ 4 >75 ⁹	% Grass co	over, Good	, HSG C				
1.	1.160 74 100.00% Pervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.5	450	0.0060	1.16		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps				

Printed 5/5/2022

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Page 4

Summary for Subcatchment Y: Backside of lots 19-29

Runoff = 2.81 cfs @ 12.11 hrs, Volume= 0.210 af, Depth= 3.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Type II 24-hr 100 year Rainfall=5.08"

_	Area	(ac)	CN	Des	cription				
*	0.	710	86						
	0.710 86 100.00% Pervious Area								
	_			01		0 "	D		
	IC	Leng	jth		,	. ,	Description		
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)			
	19.4			•	•	•	Direct Entry.		

Summary for Pond 13P: (2) 10'x6' Filterra Units (FTIBC1006)

[93] Warning: Storage range exceeded by 0.05'

[88] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area = 0.460 ac, 0.00% Impervious, Inflow Depth = 4.28" for 100 year event
Inflow = 3.62 cfs @ 11.92 hrs, Volume= 0.164 af

Outflow = 3.71 cfs @ 11.92 hrs, Volume= 0.164 af, Atten= 0%, Lag= 0.1 min

Primary = 3.71 cfs @ 11.92 hrs, Volume= 0.164 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 329.36' @ 11.92 hrs Surf.Area= 120 sf Storage= 132 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.6 min (771.1 - 770.5)

<u>Volume</u>	Invert	Avail.Stor	rage Storage Description
#1	328.21'	13	32 cf 6.00'W x 10.00'L x 1.10'H Vault x 2
Device	Routing	Invert	Outlet Devices
#1	Device 3	328.21'	140.000 in/hr Filtration over Surface area from 328.20' - 328.22'
			Excluded Surface area = 0 sf
#2	Device 3	328.96'	10.0" Horiz. 10" Overflow Pipe X 2.00 C= 0.600
			Limited to weir flow at low heads
#3	Primary	325.71'	• • • • • • • • • • • • • • • • • • •
			Inlet / Outlet Invert= 325.71' / 324.98' S= 0.0135 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=3.68 cfs @ 11.92 hrs HW=329.35' (Free Discharge)

3=10" PVC Pipe (Passes 3.68 cfs of 5.23 cfs potential flow)

1=Filtration (Exfiltration Controls 0.39 cfs)

-2=10" Overflow Pipe (Orifice Controls 3.29 cfs @ 3.01 fps)

Page 5

Summary for Pond 14P: Pipe Storage

[88] Warning: Qout>Qin may require smaller dt or Finer Routing

[81] Warning: Exceeded Pond 13P by 0.80' @ 12.47 hrs

Inflow Area = 0.460 ac, 0.00% Impervious, Inflow Depth = 4.28" for 100 year event

Inflow = 3.71 cfs @ 11.92 hrs, Volume= 0.164 af

Outflow = 3.92 cfs @ 11.94 hrs, Volume= 0.164 af, Atten= 0%, Lag= 1.0 min

Primary = 3.92 cfs @ 11.94 hrs, Volume= 0.164 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 329.34 @ 11.94 hrs Surf.Area= 0.000 ac Storage= 0.068 af

Plug-Flow detention time= 488.0 min calculated for 0.164 af (100% of inflow)

Center-of-Mass det. time= 488.1 min (1,259.2 - 771.1)

Volume	Invert	Avail.Storage	Storage Description
#1	325.25'	0.066 af	48.0" Round 48" Pipe
			L= 230.0'
#2	325.25'	0.001 af	4.00'D x 4.50'H Drainage Manhole

0.068 af Total Available Storage

Device	Routing	Invert	Outlet Devices
#1	Device 3	325.25'	1.0" Vert. 1" Orifice C= 0.600 Limited to weir flow at low heads
#2	Device 3	328.95'	5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Primary	325.25'	15.0" Round 15" Outlet Pipe
			L= 50.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 325.25' / 324.98' S= 0.0054 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.83 cfs @ 11.94 hrs HW=329.33' (Free Discharge)

3=15" Outlet Pipe (Passes 3.83 cfs of 10.62 cfs potential flow)

1=1" Orifice (Orifice Controls 0.05 cfs @ 9.68 fps)

—2=Sharp-Crested Rectangular Weir (Weir Controls 3.78 cfs @ 2.02 fps)

Summary for Pond 15F: Forebay #2

Inflow Area = 0.140 ac, 0.00% Impervious, Inflow Depth = 3.64" for 100 year event

Inflow = 1.03 cfs @ 11.91 hrs, Volume= 0.042 af

Outflow = 1.01 cfs @ 11.91 hrs, Volume= 0.042 af, Atten= 2%, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs

Starting Elev= 328.50' Surf. Area = 278 sf Storage = 302 cf

Peak Elev= 328.62' @ 11.91 hrs Surf.Area= 305 sf Storage= 338 cf (36 cf above start)

Plug-Flow detention time= 106.9 min calculated for 0.036 af (84% of inflow)

Center-of-Mass det. time= 1.0 min (793.6 - 792.6)

19054-Lot 30

Prepared by VHB

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022

Page 6

Volume	Inv	ert Avail	.Storage	Storage Description	on		
#1	326	.50'	470 cf	Forebay Storage	(Irregular)Listed	below (Recalc)	
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
326.5		43	46.0	0	0	43	
327.0		93	53.0	33	33	103	
328.0	00	210	65.0	148	181	231	
328.5	50	278	71.0	122	302	304	
329.0	00	395	87.0	167	470	509	
Device	Routing	j Inv	ert Outle	et Devices			
#1	Primary	328.	50' 10.0'	long x 5.0' bread	dth Stone Spillwa	ay	
	·		Head	I (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60 1.80	2.00
			2.50	3.00 3.50 4.00 4	1.50 5.00 5.50		
			Coef.	(English) 2.34 2	.50 2.70 2.68 2.	68 2.66 2.65 2.65 2	.65
			2.65	2.67 2.66 2.68 2	2.70 2.74 2.79 2	.88	

Primary OutFlow Max=1.01 cfs @ 11.91 hrs HW=328.62' (Free Discharge) 1=Stone Spillway (Weir Controls 1.01 cfs @ 0.82 fps)

Summary for Pond 15P: Bioretention Basin

[81] Warning: Exceeded Pond 15F by 0.87' @ 12.02 hrs

Inflow Area = 0.140 ac, 0.00% Impervious, Inflow Depth = 3.64" for 100 year event Inflow = 1.01 cfs @ 11.91 hrs, Volume= 0.042 af

Outflow = 0.38 cfs @ 11.99 hrs, Volume= 0.042 af, Atten= 62%, Lag= 4.8 min 0.042 af

Primary = 0.38 cfs @ 11.99 hrs, Volume= 0.042 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs Peak Elev= 329.42' @ 11.99 hrs Surf.Area= 1,135 sf Storage= 886 cf

Plug-Flow detention time= 712.6 min calculated for 0.042 af (100% of inflow) Center-of-Mass det. time= 712.9 min (1,506.5 - 793.6)

Volume	Inver	t Avail.S	Storage	Storage Descripti	ion			
#1	328.00	1	978 cf	Surface Ponding	g (Irregular) Listed	below (Recalc)		
Elevation (fee		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
328.0	00	180	72.0	0	0	180		
329.0	00	844	160.0	471	471	1,809		
329.5	50	1,195	183.0	507	978	2,442		
Device	Routing	Inve	ert Outle	et Devices				
#1	Device 4	328.0	0' 0.50	.500 in/hr Filtration over Surface area from 327.99' - 328.01'				
		Ē:		Excluded Surface area = 0 sf				
#2	Device 4	328.90' 1.0"		.0" Vert. 1" Orifice C= 0.600 Limited to weir flow at low heads				
#3	Device 4	4 329.25' 6.0"		" Horiz. 6" Cast-iron dome inlet grate C= 0.600 nited to weir flow at low heads				

19054-Lot 30

Prepared by VHB

HydroCAD® 10.10-5a s/n 01038 © 2020 HydroCAD Software Solutions LLC

Printed 5/5/2022

Page 7

#4 Primary 324.75' **12.0" Round Pipe Outlet**

L= 40.0' CPP, square edge headwall, Ke= 0.500

Inlet / Outlet Invert= 324.75' / 324.50' S= 0.0063 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.38 cfs @ 11.99 hrs HW=329.42' (Free Discharge)

4=Pipe Outlet (Passes 0.38 cfs of 7.52 cfs potential flow)

—1=Filtration (Exfiltration Controls 0.00 cfs)

—2=1" Orifice (Orifice Controls 0.02 cfs @ 3.33 fps)

-3=6" Cast-iron dome inlet grate (Weir Controls 0.36 cfs @ 1.35 fps)

Summary for Pond YI: Lot 30 Drainage Improvements

Inflow Area = 1.870 ac, 0.00% Impervious, Inflow Depth = 2.85" for 100 year event

Inflow = 6.85 cfs @ 11.99 hrs, Volume= 0.444 af

Outflow = 6.22 cfs @ 12.03 hrs, Volume= 0.443 af, Atten= 9%, Lag= 2.5 min

Primary = 6.22 cfs @ 12.03 hrs, Volume= 0.443 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.01 hrs / 2

Peak Elev= 329.17' @ 12.03 hrs Surf.Area= 6,720 sf Storage= 4,394 cf

Plug-Flow detention time= 129.8 min calculated for 0.443 af (100% of inflow)

Center-of-Mass det. time= 127.8 min (952.0 - 824.1)

Volume	Invert	Avail.Storage	Storage Description
#1	327.50'	4,233 cf	Lawn Area (Irregular)Listed below (Recalc)
#2	324.75'	106 cf	12.0" Round Pipe Storage
			L= 135.0' S= 0.0050 '/'
#3	324.75'	63 cf	4.00'D x 5.00'H Catchbasin

4,402 cf Total Available Storage

Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
327.50	12	24.0	0	0	12
328.00	1,695	288.0	308	308	6,567
329.00	6,707	422.0	3,925	4,233	14,146

Device	Routing	Invert	Outlet Devices
#1	Primary	324.75'	12.0" Round Outlet Pipe
			L= 40.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 324.75' / 324.50' S= 0.0063 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	324.75'	1.0" Vert. 1" Orifice C= 0.600 Limited to weir flow at low heads
#3	Device 1	328.55'	4.0' long Top Weir Wall 2 End Contraction(s)

Primary OutFlow Max=5.93 cfs @ 12.03 hrs HW=329.15' (Free Discharge)

1=Outlet Pipe (Passes 5.93 cfs of 7.25 cfs potential flow)

2=1" Orifice (Orifice Controls 0.05 cfs @ 10.05 fps)

-3=Top Weir Wall (Weir Controls 5.88 cfs @ 2.53 fps)